{"title":"具有交通监测路线图的快速多普勒后STAP:概述和初步结果","authors":"A. B. C. da Silva, S. Baumgartner, A. Moreira","doi":"10.5194/ars-17-137-2019","DOIUrl":null,"url":null,"abstract":"Abstract. Synthetic aperture radar (SAR) is an efficient solution for road traffic monitoring due to its high spatial resolution and independence from daylight and weather conditions. In this sense, a number of ground moving target indication (GMTI) algorithms have been developed, whereas their robustness is often achieved with high costs, increased hardware complexity and high computational burden. This paper presents a fast GMTI processor that blends the powerful post-Doppler space-time adaptive processing (PD STAP) with an a priori known road map and digital elevation model (DEM). The algorithm presents great potential for real-time processing, decreased hardware complexity and low costs compared to state-of-the-art systems. It is tested using real 4-channel X-band radar data acquired with the DLR's airborne F-SAR.","PeriodicalId":45093,"journal":{"name":"Advances in Radio Science","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast post-Doppler STAP with road map for traffic monitoring: overview and first results\",\"authors\":\"A. B. C. da Silva, S. Baumgartner, A. Moreira\",\"doi\":\"10.5194/ars-17-137-2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Synthetic aperture radar (SAR) is an efficient solution for road traffic monitoring due to its high spatial resolution and independence from daylight and weather conditions. In this sense, a number of ground moving target indication (GMTI) algorithms have been developed, whereas their robustness is often achieved with high costs, increased hardware complexity and high computational burden. This paper presents a fast GMTI processor that blends the powerful post-Doppler space-time adaptive processing (PD STAP) with an a priori known road map and digital elevation model (DEM). The algorithm presents great potential for real-time processing, decreased hardware complexity and low costs compared to state-of-the-art systems. It is tested using real 4-channel X-band radar data acquired with the DLR's airborne F-SAR.\",\"PeriodicalId\":45093,\"journal\":{\"name\":\"Advances in Radio Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Radio Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/ars-17-137-2019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radio Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ars-17-137-2019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fast post-Doppler STAP with road map for traffic monitoring: overview and first results
Abstract. Synthetic aperture radar (SAR) is an efficient solution for road traffic monitoring due to its high spatial resolution and independence from daylight and weather conditions. In this sense, a number of ground moving target indication (GMTI) algorithms have been developed, whereas their robustness is often achieved with high costs, increased hardware complexity and high computational burden. This paper presents a fast GMTI processor that blends the powerful post-Doppler space-time adaptive processing (PD STAP) with an a priori known road map and digital elevation model (DEM). The algorithm presents great potential for real-time processing, decreased hardware complexity and low costs compared to state-of-the-art systems. It is tested using real 4-channel X-band radar data acquired with the DLR's airborne F-SAR.