{"title":"基于SLAM的多传感器数据融合的一般概念","authors":"J. Klečka, K. Horak, Ondrej Bostik","doi":"10.11591/ijra.v9i2.pp63-72","DOIUrl":null,"url":null,"abstract":"This paper is approaching a problem of Simultaneous Localization and Mapping (SLAM) algorithms focused specifically on processing of data from a heterogeneous set of sensors concurrently. Sensors are considered to be different in a sense of measured physical quantity and so the problem of effective data-fusion is discussed. A special extension of the standard probabilistic approach to SLAM algorithms is presented. This extension is composed of two parts. Firstly is presented general perspective multiple-sensors based SLAM and then thee archetypical special cases are discuses. One archetype provisionally designated as \"partially collective mapping\" has been analyzed also in a practical perspective because it implies a promising options for implicit map-level data-fusion.","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"9 1","pages":"63-72"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"General concepts of multi-sensor data-fusion based SLAM\",\"authors\":\"J. Klečka, K. Horak, Ondrej Bostik\",\"doi\":\"10.11591/ijra.v9i2.pp63-72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is approaching a problem of Simultaneous Localization and Mapping (SLAM) algorithms focused specifically on processing of data from a heterogeneous set of sensors concurrently. Sensors are considered to be different in a sense of measured physical quantity and so the problem of effective data-fusion is discussed. A special extension of the standard probabilistic approach to SLAM algorithms is presented. This extension is composed of two parts. Firstly is presented general perspective multiple-sensors based SLAM and then thee archetypical special cases are discuses. One archetype provisionally designated as \\\"partially collective mapping\\\" has been analyzed also in a practical perspective because it implies a promising options for implicit map-level data-fusion.\",\"PeriodicalId\":73286,\"journal\":{\"name\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"volume\":\"9 1\",\"pages\":\"63-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijra.v9i2.pp63-72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijra.v9i2.pp63-72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
General concepts of multi-sensor data-fusion based SLAM
This paper is approaching a problem of Simultaneous Localization and Mapping (SLAM) algorithms focused specifically on processing of data from a heterogeneous set of sensors concurrently. Sensors are considered to be different in a sense of measured physical quantity and so the problem of effective data-fusion is discussed. A special extension of the standard probabilistic approach to SLAM algorithms is presented. This extension is composed of two parts. Firstly is presented general perspective multiple-sensors based SLAM and then thee archetypical special cases are discuses. One archetype provisionally designated as "partially collective mapping" has been analyzed also in a practical perspective because it implies a promising options for implicit map-level data-fusion.