Alexandra Paxinou, Elena Marcello, Vittoria Vecchiato, Lara Erman, Edward Wright, Brendon Noble, Adele McCormick, Pooja Basnett
{"title":"聚羟基烷酸酯和抗菌/抗病毒金纳米粒子的双重生产","authors":"Alexandra Paxinou, Elena Marcello, Vittoria Vecchiato, Lara Erman, Edward Wright, Brendon Noble, Adele McCormick, Pooja Basnett","doi":"10.3389/fnano.2023.1243056","DOIUrl":null,"url":null,"abstract":"Gold nanoparticles (AuNPs) have been explored for their use in medicine. Here, we report a sustainable, and cost-effective method to produce AuNPs using a bacterial strain such as Pseudomonas mendocina CH50 which is also known to be a polyhydroxyalkanoate (PHA) producer. A cell-free bacterial supernatant, which is typically discarded after PHA extraction, was used to produce spherical AuNPs of 3.5 ± 1.5 nm in size as determined by Transmission Electron Microscopy (TEM) analysis. The AuNPs/PHA composite coating demonstrated antibacterial activity against Staphylococcus aureus 6538P, and antiviral activity, with a 75% reduction in viral infectivity against SARS-CoV-2 pseudotype virus.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual production of polyhydroxyalkanoates and antibacterial/antiviral gold nanoparticles\",\"authors\":\"Alexandra Paxinou, Elena Marcello, Vittoria Vecchiato, Lara Erman, Edward Wright, Brendon Noble, Adele McCormick, Pooja Basnett\",\"doi\":\"10.3389/fnano.2023.1243056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gold nanoparticles (AuNPs) have been explored for their use in medicine. Here, we report a sustainable, and cost-effective method to produce AuNPs using a bacterial strain such as Pseudomonas mendocina CH50 which is also known to be a polyhydroxyalkanoate (PHA) producer. A cell-free bacterial supernatant, which is typically discarded after PHA extraction, was used to produce spherical AuNPs of 3.5 ± 1.5 nm in size as determined by Transmission Electron Microscopy (TEM) analysis. The AuNPs/PHA composite coating demonstrated antibacterial activity against Staphylococcus aureus 6538P, and antiviral activity, with a 75% reduction in viral infectivity against SARS-CoV-2 pseudotype virus.\",\"PeriodicalId\":34432,\"journal\":{\"name\":\"Frontiers in Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnano.2023.1243056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2023.1243056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual production of polyhydroxyalkanoates and antibacterial/antiviral gold nanoparticles
Gold nanoparticles (AuNPs) have been explored for their use in medicine. Here, we report a sustainable, and cost-effective method to produce AuNPs using a bacterial strain such as Pseudomonas mendocina CH50 which is also known to be a polyhydroxyalkanoate (PHA) producer. A cell-free bacterial supernatant, which is typically discarded after PHA extraction, was used to produce spherical AuNPs of 3.5 ± 1.5 nm in size as determined by Transmission Electron Microscopy (TEM) analysis. The AuNPs/PHA composite coating demonstrated antibacterial activity against Staphylococcus aureus 6538P, and antiviral activity, with a 75% reduction in viral infectivity against SARS-CoV-2 pseudotype virus.