Morena Miciaccia, M. Iaselli, S. Ferorelli, P. L. Polosa, M. Perrone, A. Scilimati
{"title":"绵羊COX-1同工酶的生物生产","authors":"Morena Miciaccia, M. Iaselli, S. Ferorelli, P. L. Polosa, M. Perrone, A. Scilimati","doi":"10.2174/1573408017666211108104731","DOIUrl":null,"url":null,"abstract":"\n\nRecent findings enlightened the pivotal role of cyclooxygenases-1 and -2 (COX-1 and COX-2) in human diseases with inflammation as the committed earliest stage, such as cancer and neurodegenerative diseases. COXs are the main targets of nonsteroidal anti-inflammatory drugs and catalyze the bis-oxygenation of arachidonic acid into prostaglandin PGH2, then converted into prostaglandins, thromboxane, and prostacyclin by tissue-specific isomerases. A remarkable amount of pure COX-1 results is necessary to investigate COX-1 structure and function, as well as for in vitro disease biochemical pathway investigations. \n\n\n\n\n Spodoptera frugiperda cells were infected with Baculovirus that revealed to be an efficient expression system to obtain a high amount of ovine COX-1. Protein solubilization time in the presence of a non-ionic detergent was modified, and a second purification step was introduced. \n\n\n\n\n An improvement of a previously reported method for pure recombinant oCOX-1 production and isolation has been achieved, leading to a lower starting volume of infected cells for each purification, an increased cell density, and of the number of viral particles per cell, and a shortened infection period. The protocol for the recombinant oCOX-1 expression and purification has been in-depth elaborated to obtain 1 mg/L of protein.\n\n\n\n\nThe optimized procedure could be suitable for producing other membrane proteins as well, for which an improvement in the solubilization step is necessary to have the availability of high concentration proteins.\n\n","PeriodicalId":35405,"journal":{"name":"Current Enzyme Inhibition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ovine COX-1 isoenzyme bio-production\",\"authors\":\"Morena Miciaccia, M. Iaselli, S. Ferorelli, P. L. Polosa, M. Perrone, A. Scilimati\",\"doi\":\"10.2174/1573408017666211108104731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nRecent findings enlightened the pivotal role of cyclooxygenases-1 and -2 (COX-1 and COX-2) in human diseases with inflammation as the committed earliest stage, such as cancer and neurodegenerative diseases. COXs are the main targets of nonsteroidal anti-inflammatory drugs and catalyze the bis-oxygenation of arachidonic acid into prostaglandin PGH2, then converted into prostaglandins, thromboxane, and prostacyclin by tissue-specific isomerases. A remarkable amount of pure COX-1 results is necessary to investigate COX-1 structure and function, as well as for in vitro disease biochemical pathway investigations. \\n\\n\\n\\n\\n Spodoptera frugiperda cells were infected with Baculovirus that revealed to be an efficient expression system to obtain a high amount of ovine COX-1. Protein solubilization time in the presence of a non-ionic detergent was modified, and a second purification step was introduced. \\n\\n\\n\\n\\n An improvement of a previously reported method for pure recombinant oCOX-1 production and isolation has been achieved, leading to a lower starting volume of infected cells for each purification, an increased cell density, and of the number of viral particles per cell, and a shortened infection period. The protocol for the recombinant oCOX-1 expression and purification has been in-depth elaborated to obtain 1 mg/L of protein.\\n\\n\\n\\n\\nThe optimized procedure could be suitable for producing other membrane proteins as well, for which an improvement in the solubilization step is necessary to have the availability of high concentration proteins.\\n\\n\",\"PeriodicalId\":35405,\"journal\":{\"name\":\"Current Enzyme Inhibition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Enzyme Inhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1573408017666211108104731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Enzyme Inhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1573408017666211108104731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Recent findings enlightened the pivotal role of cyclooxygenases-1 and -2 (COX-1 and COX-2) in human diseases with inflammation as the committed earliest stage, such as cancer and neurodegenerative diseases. COXs are the main targets of nonsteroidal anti-inflammatory drugs and catalyze the bis-oxygenation of arachidonic acid into prostaglandin PGH2, then converted into prostaglandins, thromboxane, and prostacyclin by tissue-specific isomerases. A remarkable amount of pure COX-1 results is necessary to investigate COX-1 structure and function, as well as for in vitro disease biochemical pathway investigations.
Spodoptera frugiperda cells were infected with Baculovirus that revealed to be an efficient expression system to obtain a high amount of ovine COX-1. Protein solubilization time in the presence of a non-ionic detergent was modified, and a second purification step was introduced.
An improvement of a previously reported method for pure recombinant oCOX-1 production and isolation has been achieved, leading to a lower starting volume of infected cells for each purification, an increased cell density, and of the number of viral particles per cell, and a shortened infection period. The protocol for the recombinant oCOX-1 expression and purification has been in-depth elaborated to obtain 1 mg/L of protein.
The optimized procedure could be suitable for producing other membrane proteins as well, for which an improvement in the solubilization step is necessary to have the availability of high concentration proteins.
期刊介绍:
Current Enzyme Inhibition aims to publish all the latest and outstanding developments in enzyme inhibition studies with regards to the mechanisms of inhibitory processes of enzymes, recognition of active sites, and the discovery of agonists and antagonists, leading to the design and development of new drugs of significant therapeutic value. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of enzymes that can be exploited for drug development. Current Enzyme Inhibition is an essential journal for every pharmaceutical and medicinal chemist who wishes to have up-to-date knowledge about each and every development in the study of enzyme inhibition.