{"title":"我们运行了90亿次回归:通过计算模型稳健性消除误报","authors":"John Muñoz, Cristobal Young","doi":"10.1177/0081175018777988","DOIUrl":null,"url":null,"abstract":"False positive findings are a growing problem in many research literatures. We argue that excessive false positives often stem from model uncertainty. There are many plausible ways of specifying a regression model, but researchers typically report only a few preferred estimates. This raises the concern that such research reveals only a small fraction of the possible results and may easily lead to nonrobust, false positive conclusions. It is often unclear how much the results are driven by model specification and how much the results would change if a different plausible model were used. Computational model robustness analysis addresses this challenge by estimating all possible models from a theoretically informed model space. We use large-scale random noise simulations to show (1) the problem of excess false positive errors under model uncertainty and (2) that computational robustness analysis can identify and eliminate false positives caused by model uncertainty. We also draw on a series of empirical applications to further illustrate issues of model uncertainty and estimate instability. Computational robustness analysis offers a method for relaxing modeling assumptions and improving the transparency of applied research.","PeriodicalId":48140,"journal":{"name":"Sociological Methodology","volume":"48 1","pages":"1 - 33"},"PeriodicalIF":2.4000,"publicationDate":"2018-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0081175018777988","citationCount":"37","resultStr":"{\"title\":\"We Ran 9 Billion Regressions: Eliminating False Positives through Computational Model Robustness\",\"authors\":\"John Muñoz, Cristobal Young\",\"doi\":\"10.1177/0081175018777988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"False positive findings are a growing problem in many research literatures. We argue that excessive false positives often stem from model uncertainty. There are many plausible ways of specifying a regression model, but researchers typically report only a few preferred estimates. This raises the concern that such research reveals only a small fraction of the possible results and may easily lead to nonrobust, false positive conclusions. It is often unclear how much the results are driven by model specification and how much the results would change if a different plausible model were used. Computational model robustness analysis addresses this challenge by estimating all possible models from a theoretically informed model space. We use large-scale random noise simulations to show (1) the problem of excess false positive errors under model uncertainty and (2) that computational robustness analysis can identify and eliminate false positives caused by model uncertainty. We also draw on a series of empirical applications to further illustrate issues of model uncertainty and estimate instability. Computational robustness analysis offers a method for relaxing modeling assumptions and improving the transparency of applied research.\",\"PeriodicalId\":48140,\"journal\":{\"name\":\"Sociological Methodology\",\"volume\":\"48 1\",\"pages\":\"1 - 33\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2018-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0081175018777988\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methodology\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/0081175018777988\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methodology","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/0081175018777988","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIOLOGY","Score":null,"Total":0}
We Ran 9 Billion Regressions: Eliminating False Positives through Computational Model Robustness
False positive findings are a growing problem in many research literatures. We argue that excessive false positives often stem from model uncertainty. There are many plausible ways of specifying a regression model, but researchers typically report only a few preferred estimates. This raises the concern that such research reveals only a small fraction of the possible results and may easily lead to nonrobust, false positive conclusions. It is often unclear how much the results are driven by model specification and how much the results would change if a different plausible model were used. Computational model robustness analysis addresses this challenge by estimating all possible models from a theoretically informed model space. We use large-scale random noise simulations to show (1) the problem of excess false positive errors under model uncertainty and (2) that computational robustness analysis can identify and eliminate false positives caused by model uncertainty. We also draw on a series of empirical applications to further illustrate issues of model uncertainty and estimate instability. Computational robustness analysis offers a method for relaxing modeling assumptions and improving the transparency of applied research.
期刊介绍:
Sociological Methodology is a compendium of new and sometimes controversial advances in social science methodology. Contributions come from diverse areas and have something useful -- and often surprising -- to say about a wide range of topics ranging from legal and ethical issues surrounding data collection to the methodology of theory construction. In short, Sociological Methodology holds something of value -- and an interesting mix of lively controversy, too -- for nearly everyone who participates in the enterprise of sociological research.