铽掺杂BiFeO3纳米粒子的磁电耦合效应

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
I. Apostolova, A. Apostolov, J. Wesselinowa
{"title":"铽掺杂BiFeO3纳米粒子的磁电耦合效应","authors":"I. Apostolova, A. Apostolov, J. Wesselinowa","doi":"10.3390/magnetochemistry9060142","DOIUrl":null,"url":null,"abstract":"The magnetic, electric, and optical properties in Tb-doped BiFeO3 nanoparticles as functions of size and doping concentrations were investigated using a microscopic model, taking into account both linear and quadratic magnetoelectric (ME) coupling. We observed improved multiferroic properties and band-gap tuning. The magnetization and polarization increased with the decreased nanoparticle size and increased Tb-doping substitution x. The Neel temperature remained nearly unchanged whereas the Curie temperature was reduced with the increased x. There was doping-induced ME coupling. The dielectric constant is discussed as a function of the size, doping, and the magnetic field. The band gap decreased with the decreased size or increased Tb dopants due to competing effects of the compressive strain, oxygen defects on the surface, and Coulomb interactions. Increasing the Tb dopants and decreasing the nanoparticle size improved the ME effect.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles\",\"authors\":\"I. Apostolova, A. Apostolov, J. Wesselinowa\",\"doi\":\"10.3390/magnetochemistry9060142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The magnetic, electric, and optical properties in Tb-doped BiFeO3 nanoparticles as functions of size and doping concentrations were investigated using a microscopic model, taking into account both linear and quadratic magnetoelectric (ME) coupling. We observed improved multiferroic properties and band-gap tuning. The magnetization and polarization increased with the decreased nanoparticle size and increased Tb-doping substitution x. The Neel temperature remained nearly unchanged whereas the Curie temperature was reduced with the increased x. There was doping-induced ME coupling. The dielectric constant is discussed as a function of the size, doping, and the magnetic field. The band gap decreased with the decreased size or increased Tb dopants due to competing effects of the compressive strain, oxygen defects on the surface, and Coulomb interactions. Increasing the Tb dopants and decreasing the nanoparticle size improved the ME effect.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry9060142\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9060142","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在考虑线性和二次磁电(ME)耦合的情况下,使用微观模型研究了掺Tb的BiFeO3纳米颗粒的磁、电和光学性质与尺寸和掺杂浓度的关系。我们观察到多铁性性质和带隙调谐的改善。磁化和极化随着纳米颗粒尺寸的减小和Tb掺杂取代度的增加而增加。尼尔温度几乎保持不变,而居里温度随着x的增加而降低。存在掺杂诱导的ME耦合。介电常数被讨论为尺寸、掺杂和磁场的函数。由于压缩应变、表面氧缺陷和库仑相互作用的竞争效应,带隙随着尺寸的减小或Tb掺杂剂的增加而减小。增加Tb掺杂剂和减小纳米颗粒尺寸改善了ME效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetoelectric Coupling Effects in Tb-Doped BiFeO3 Nanoparticles
The magnetic, electric, and optical properties in Tb-doped BiFeO3 nanoparticles as functions of size and doping concentrations were investigated using a microscopic model, taking into account both linear and quadratic magnetoelectric (ME) coupling. We observed improved multiferroic properties and band-gap tuning. The magnetization and polarization increased with the decreased nanoparticle size and increased Tb-doping substitution x. The Neel temperature remained nearly unchanged whereas the Curie temperature was reduced with the increased x. There was doping-induced ME coupling. The dielectric constant is discussed as a function of the size, doping, and the magnetic field. The band gap decreased with the decreased size or increased Tb dopants due to competing effects of the compressive strain, oxygen defects on the surface, and Coulomb interactions. Increasing the Tb dopants and decreasing the nanoparticle size improved the ME effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信