{"title":"在小波散射变换、双向加权(2D)2PCA和KELM统一框架下识别癫痫性脑电图和充血性心力衰竭脑电图","authors":"Tao Zhang , Wanzhong Chen , Xiaojuan Chen","doi":"10.1016/j.bbe.2023.01.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>In order to achieve the accurate identifications of various electroencephalograms (EEGs) and electrocardiograms (ECGs), a unified framework of wavelet scattering transform (WST), bidirectional weighted two-directional two-dimensional principal component analysis (BW(2D)</span><sup>2</sup><span>PCA) and grey wolf<span> optimization based kernel extreme learning machine (KELM) was put forward in this study. To extract more discriminating features in the WST domain, the BW(2D)</span></span><sup>2</sup><span>PCA was proposed based on original two-directional two-dimensional principal component analysis, by considering both the contribution of eigenvalue and the variation of two adjacent eigenvalues. Totally fifteen classification tasks of classifying normal </span><em>vs</em> interictal <em>vs</em><span> ictal EEGs, non-seizure </span><em>vs</em> seizure EEGs and normal <em>vs</em> congestive heart failure (CHF) ECGs were investigated. Applying patient non-specific strategy, the proposed scheme reported ACCs of no less than 99.300 ± 0.121 % for all the thirteen classification cases of Bonn dataset in classifying normal <em>vs</em> interictal <em>vs</em><span> ictal EEGs, MCC of 90.947 ± 0.128 % in distinguishing non-seizure </span><em>vs</em> seizure EEGs of CHB-MIT dataset, and MCC of 99.994 ± 0.001 % in identifying normal <em>vs</em> CHF ECGs of BBIH dataset. Experimental results indicate BW(2D)<sup>2</sup>PCA based framework outperforms (2D)<sup>2</sup>PCA based scheme, the high-performance results manifest the effectiveness of the proposed framework and our proposal is superior to most existing approaches.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"43 1","pages":"Pages 279-297"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identifying epileptic EEGs and congestive heart failure ECGs under unified framework of wavelet scattering transform, bidirectional weighted (2D)2PCA and KELM\",\"authors\":\"Tao Zhang , Wanzhong Chen , Xiaojuan Chen\",\"doi\":\"10.1016/j.bbe.2023.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In order to achieve the accurate identifications of various electroencephalograms (EEGs) and electrocardiograms (ECGs), a unified framework of wavelet scattering transform (WST), bidirectional weighted two-directional two-dimensional principal component analysis (BW(2D)</span><sup>2</sup><span>PCA) and grey wolf<span> optimization based kernel extreme learning machine (KELM) was put forward in this study. To extract more discriminating features in the WST domain, the BW(2D)</span></span><sup>2</sup><span>PCA was proposed based on original two-directional two-dimensional principal component analysis, by considering both the contribution of eigenvalue and the variation of two adjacent eigenvalues. Totally fifteen classification tasks of classifying normal </span><em>vs</em> interictal <em>vs</em><span> ictal EEGs, non-seizure </span><em>vs</em> seizure EEGs and normal <em>vs</em> congestive heart failure (CHF) ECGs were investigated. Applying patient non-specific strategy, the proposed scheme reported ACCs of no less than 99.300 ± 0.121 % for all the thirteen classification cases of Bonn dataset in classifying normal <em>vs</em> interictal <em>vs</em><span> ictal EEGs, MCC of 90.947 ± 0.128 % in distinguishing non-seizure </span><em>vs</em> seizure EEGs of CHB-MIT dataset, and MCC of 99.994 ± 0.001 % in identifying normal <em>vs</em> CHF ECGs of BBIH dataset. Experimental results indicate BW(2D)<sup>2</sup>PCA based framework outperforms (2D)<sup>2</sup>PCA based scheme, the high-performance results manifest the effectiveness of the proposed framework and our proposal is superior to most existing approaches.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"43 1\",\"pages\":\"Pages 279-297\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521623000025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Identifying epileptic EEGs and congestive heart failure ECGs under unified framework of wavelet scattering transform, bidirectional weighted (2D)2PCA and KELM
In order to achieve the accurate identifications of various electroencephalograms (EEGs) and electrocardiograms (ECGs), a unified framework of wavelet scattering transform (WST), bidirectional weighted two-directional two-dimensional principal component analysis (BW(2D)2PCA) and grey wolf optimization based kernel extreme learning machine (KELM) was put forward in this study. To extract more discriminating features in the WST domain, the BW(2D)2PCA was proposed based on original two-directional two-dimensional principal component analysis, by considering both the contribution of eigenvalue and the variation of two adjacent eigenvalues. Totally fifteen classification tasks of classifying normal vs interictal vs ictal EEGs, non-seizure vs seizure EEGs and normal vs congestive heart failure (CHF) ECGs were investigated. Applying patient non-specific strategy, the proposed scheme reported ACCs of no less than 99.300 ± 0.121 % for all the thirteen classification cases of Bonn dataset in classifying normal vs interictal vs ictal EEGs, MCC of 90.947 ± 0.128 % in distinguishing non-seizure vs seizure EEGs of CHB-MIT dataset, and MCC of 99.994 ± 0.001 % in identifying normal vs CHF ECGs of BBIH dataset. Experimental results indicate BW(2D)2PCA based framework outperforms (2D)2PCA based scheme, the high-performance results manifest the effectiveness of the proposed framework and our proposal is superior to most existing approaches.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.