用于高功率超短脉冲激光印刷和压花应用的多光束微处理

IF 2.3 Q2 OPTICS
S. Bruening, A. Gillner, K. Du
{"title":"用于高功率超短脉冲激光印刷和压花应用的多光束微处理","authors":"S. Bruening, A. Gillner, K. Du","doi":"10.1515/aot-2021-0025","DOIUrl":null,"url":null,"abstract":"Abstract Micro structuring of surfaces is of great interest for various applications, e.g. for the tooling industry, the printing industry and for consumer goods. In suitable mass production applications, such as injection molding or roll-to-roll processing for various markets, the final product could be equipped with new properties, such as hydrophilic behavior, adjustable gloss level, soft-touch behavior, light management properties etc. To generate functionalities at reasonable cost, embossing dies can be augmented with additional micro/nano-scale structure using laser ablation technologies. Despite the availability of ultrashort pulsed (USP) high power lasers (up to several hundred watts), it is still a challenge to structure large areas, as required on embossing rolls, in an acceptable processing time for industrial production. In terms of industrial implementation, direct digital transfer is a limiting factor for ultrahigh resolution. Shorter machining times by further increasing spot or workpiece motion are limited. Enlarging the ablation diameter, and thus the tool diameter, delivers a higher ablation rate with the comparable ablation quality, but entails a reduction in resolution. While maintaining the achieved state-of-the-art performance, upscaling of single modulated lasers provides a less demanding way to increase productivity. In the processing of steel surfaces, an increase in material removal can also be achieved by using pulse burst. In this work, the parallel process of single modulated multi laser sources is compared with a laser source split by diffractive optical elements (DOE) for applications in a cylinder micro patterning system. A newly developed highly compact ps laser with repetition rates up to 8 MHz and an average power of 300 or 500 W was divided into 8 or 16 parallel beamlets by a DOE. The ablation rate of each approach was investigated by typical microstructures on copper surfaces. At surface speeds of 10 m/s and a resolution of 5080 dpi, an ablation rate of up to 27 mm³/min was achieved. Different functional surface geometries were realized on an embossing roll as master, which is used for replication of the structures in roll-to-roll processes. Functional structures, such as friction reduction, improved soft touch or light guiding elements on large surfaces are demonstrated.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi beam microprocessing for printing and embossing applications with high power ultrashort pulsed lasers\",\"authors\":\"S. Bruening, A. Gillner, K. Du\",\"doi\":\"10.1515/aot-2021-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Micro structuring of surfaces is of great interest for various applications, e.g. for the tooling industry, the printing industry and for consumer goods. In suitable mass production applications, such as injection molding or roll-to-roll processing for various markets, the final product could be equipped with new properties, such as hydrophilic behavior, adjustable gloss level, soft-touch behavior, light management properties etc. To generate functionalities at reasonable cost, embossing dies can be augmented with additional micro/nano-scale structure using laser ablation technologies. Despite the availability of ultrashort pulsed (USP) high power lasers (up to several hundred watts), it is still a challenge to structure large areas, as required on embossing rolls, in an acceptable processing time for industrial production. In terms of industrial implementation, direct digital transfer is a limiting factor for ultrahigh resolution. Shorter machining times by further increasing spot or workpiece motion are limited. Enlarging the ablation diameter, and thus the tool diameter, delivers a higher ablation rate with the comparable ablation quality, but entails a reduction in resolution. While maintaining the achieved state-of-the-art performance, upscaling of single modulated lasers provides a less demanding way to increase productivity. In the processing of steel surfaces, an increase in material removal can also be achieved by using pulse burst. In this work, the parallel process of single modulated multi laser sources is compared with a laser source split by diffractive optical elements (DOE) for applications in a cylinder micro patterning system. A newly developed highly compact ps laser with repetition rates up to 8 MHz and an average power of 300 or 500 W was divided into 8 or 16 parallel beamlets by a DOE. The ablation rate of each approach was investigated by typical microstructures on copper surfaces. At surface speeds of 10 m/s and a resolution of 5080 dpi, an ablation rate of up to 27 mm³/min was achieved. Different functional surface geometries were realized on an embossing roll as master, which is used for replication of the structures in roll-to-roll processes. Functional structures, such as friction reduction, improved soft touch or light guiding elements on large surfaces are demonstrated.\",\"PeriodicalId\":46010,\"journal\":{\"name\":\"Advanced Optical Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aot-2021-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2021-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 4

摘要

表面的微观结构对各种应用都有很大的兴趣,例如工具工业,印刷工业和消费品。在合适的批量生产应用中,例如针对各种市场的注塑或卷对卷加工,最终产品可以配备新的性能,如亲水性,可调光泽度,柔软的触感,光管理性能等。为了以合理的成本产生功能,压花模具可以使用激光烧蚀技术增加额外的微/纳米级结构。尽管有超短脉冲(USP)高功率激光器(高达几百瓦)的可用性,但在工业生产的可接受的加工时间内,按照压花辊的要求构造大面积仍然是一个挑战。在工业实现方面,直接数字传输是超高分辨率的限制因素。通过进一步增加点或工件运动来缩短加工时间是有限的。扩大烧蚀直径,从而扩大工具直径,可以提供更高的烧蚀率和相当的烧蚀质量,但需要降低分辨率。在保持最先进性能的同时,单调制激光器的升级提供了一种要求较低的提高生产率的方法。在钢表面的加工中,也可以通过脉冲爆发来提高材料的去除率。本文将单调制多激光源的并行过程与衍射光学元件(DOE)分离激光源的并行过程进行了比较。一个新开发的重复频率高达8mhz,平均功率为300或500 W的高度紧凑的ps激光器被DOE分成8或16个平行光束。通过铜表面的典型显微组织研究了每种方法的烧蚀速率。在表面速度为10 m/s,分辨率为5080 dpi的情况下,烧蚀速率可达27 mm³/min。以压花辊为母辊,实现了不同的功能表面几何形状,用于卷对卷工艺结构的复制。功能结构,如摩擦减少,改善软触感或大表面上的导光元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi beam microprocessing for printing and embossing applications with high power ultrashort pulsed lasers
Abstract Micro structuring of surfaces is of great interest for various applications, e.g. for the tooling industry, the printing industry and for consumer goods. In suitable mass production applications, such as injection molding or roll-to-roll processing for various markets, the final product could be equipped with new properties, such as hydrophilic behavior, adjustable gloss level, soft-touch behavior, light management properties etc. To generate functionalities at reasonable cost, embossing dies can be augmented with additional micro/nano-scale structure using laser ablation technologies. Despite the availability of ultrashort pulsed (USP) high power lasers (up to several hundred watts), it is still a challenge to structure large areas, as required on embossing rolls, in an acceptable processing time for industrial production. In terms of industrial implementation, direct digital transfer is a limiting factor for ultrahigh resolution. Shorter machining times by further increasing spot or workpiece motion are limited. Enlarging the ablation diameter, and thus the tool diameter, delivers a higher ablation rate with the comparable ablation quality, but entails a reduction in resolution. While maintaining the achieved state-of-the-art performance, upscaling of single modulated lasers provides a less demanding way to increase productivity. In the processing of steel surfaces, an increase in material removal can also be achieved by using pulse burst. In this work, the parallel process of single modulated multi laser sources is compared with a laser source split by diffractive optical elements (DOE) for applications in a cylinder micro patterning system. A newly developed highly compact ps laser with repetition rates up to 8 MHz and an average power of 300 or 500 W was divided into 8 or 16 parallel beamlets by a DOE. The ablation rate of each approach was investigated by typical microstructures on copper surfaces. At surface speeds of 10 m/s and a resolution of 5080 dpi, an ablation rate of up to 27 mm³/min was achieved. Different functional surface geometries were realized on an embossing roll as master, which is used for replication of the structures in roll-to-roll processes. Functional structures, such as friction reduction, improved soft touch or light guiding elements on large surfaces are demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
23
期刊介绍: Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信