{"title":"卡尔·普兹布拉姆:放射性、晶体和颜色","authors":"Wolfgang L. Reiter","doi":"10.1007/s00016-019-00242-z","DOIUrl":null,"url":null,"abstract":"<p>Karl Przibram is one of the pioneers of early solid state physics in the field of the interdependence of coloration effects and luminescence in solids (crystals, minerals) induced by radiation. In 1921 Przibram discovered the effect of radio-photoluminescence, the light-stimulated phosphorescence in activated crystals induced by gamma rays. In 1926 Przibram was the first to use the term, <i>Farbzentrum</i> (color center, F-center), and in 1923 he advanced the view of atomic centers as carriers of coloration. Being a pupil of Ludwig Boltzmann and Franz S. Exner, he dedicated his early work to condensation and conductivity phenomena in gases and Brownian motion. Under the influence of Stefan Meyer, he began his lifelong interest in mineralogy, setting up his own research group at the Vienna Radium Institute, which pioneered investigations on thermoluminescence and gave a first description of glow curves. Being of Jewish descent, Przibram had to leave Austria after the Nazis took power; he found shelter in Belgium and returned to Austria in 1946 as professor for experimental physics at the University of Vienna. This paper is a first attempt to give an overview of the cultural and scientific background of Przibram’s life and science in context of the cultural and political developments from 1900 to 1950 in Austria.</p>","PeriodicalId":727,"journal":{"name":"Physics in Perspective","volume":"21 3","pages":"163 - 193"},"PeriodicalIF":0.1000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00016-019-00242-z","citationCount":"1","resultStr":"{\"title\":\"Karl Przibram: Radioactivity, Crystals, and Colors\",\"authors\":\"Wolfgang L. Reiter\",\"doi\":\"10.1007/s00016-019-00242-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Karl Przibram is one of the pioneers of early solid state physics in the field of the interdependence of coloration effects and luminescence in solids (crystals, minerals) induced by radiation. In 1921 Przibram discovered the effect of radio-photoluminescence, the light-stimulated phosphorescence in activated crystals induced by gamma rays. In 1926 Przibram was the first to use the term, <i>Farbzentrum</i> (color center, F-center), and in 1923 he advanced the view of atomic centers as carriers of coloration. Being a pupil of Ludwig Boltzmann and Franz S. Exner, he dedicated his early work to condensation and conductivity phenomena in gases and Brownian motion. Under the influence of Stefan Meyer, he began his lifelong interest in mineralogy, setting up his own research group at the Vienna Radium Institute, which pioneered investigations on thermoluminescence and gave a first description of glow curves. Being of Jewish descent, Przibram had to leave Austria after the Nazis took power; he found shelter in Belgium and returned to Austria in 1946 as professor for experimental physics at the University of Vienna. This paper is a first attempt to give an overview of the cultural and scientific background of Przibram’s life and science in context of the cultural and political developments from 1900 to 1950 in Austria.</p>\",\"PeriodicalId\":727,\"journal\":{\"name\":\"Physics in Perspective\",\"volume\":\"21 3\",\"pages\":\"163 - 193\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2019-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00016-019-00242-z\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in Perspective\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00016-019-00242-z\",\"RegionNum\":3,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Perspective","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00016-019-00242-z","RegionNum":3,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
Karl Przibram: Radioactivity, Crystals, and Colors
Karl Przibram is one of the pioneers of early solid state physics in the field of the interdependence of coloration effects and luminescence in solids (crystals, minerals) induced by radiation. In 1921 Przibram discovered the effect of radio-photoluminescence, the light-stimulated phosphorescence in activated crystals induced by gamma rays. In 1926 Przibram was the first to use the term, Farbzentrum (color center, F-center), and in 1923 he advanced the view of atomic centers as carriers of coloration. Being a pupil of Ludwig Boltzmann and Franz S. Exner, he dedicated his early work to condensation and conductivity phenomena in gases and Brownian motion. Under the influence of Stefan Meyer, he began his lifelong interest in mineralogy, setting up his own research group at the Vienna Radium Institute, which pioneered investigations on thermoluminescence and gave a first description of glow curves. Being of Jewish descent, Przibram had to leave Austria after the Nazis took power; he found shelter in Belgium and returned to Austria in 1946 as professor for experimental physics at the University of Vienna. This paper is a first attempt to give an overview of the cultural and scientific background of Przibram’s life and science in context of the cultural and political developments from 1900 to 1950 in Austria.
期刊介绍:
Physics in Perspective seeks to bridge the gulf between physicists and non-physicists through historical and philosophical studies that typically display the unpredictable as well as the cross-disciplinary interplay of observation, experiment, and theory that has occurred over extended periods of time in academic, governmental, and industrial settings and in allied disciplines such as astrophysics, chemical physics, and geophysics. The journal also publishes first-person accounts by physicists of significant contributions they have made, biographical articles, book reviews, and guided tours of historical sites in cities throughout the world. It strives to make all articles understandable to a broad spectrum of readers – scientists, teachers, students, and the public at large. Bibliographic Data Phys. Perspect. 1 volume per year, 4 issues per volume approx. 500 pages per volume Format: 15.5 x 23.5cm ISSN 1422-6944 (print) ISSN 1422-6960 (electronic)