{"title":"情绪从消极兴奋状态到积极未兴奋状态的转变:ERP视角","authors":"M. Singh, Mandeep Singh","doi":"10.24425/mms.2022.140030","DOIUrl":null,"url":null,"abstract":"The cognitive aspects like perception, problem-solving, thinking, task performance, etc., are immensely influenced by emotions making it necessary to study emotions. The best state of emotion is the positive unexcitedstate,alsoknownastheHighValenceLowArousal(HVLA)stateoftheemotion.Thepsychologists endeavourtobringthesubjectsfromanegativelyexcitedstateofemotion(LowValenceHighArousalstate) toapositiveunexcitedstateofemotion(HighValenceLowArousalstate).Inthefirstpartofthisstudy, afour-classsubjectindependentemotionclassifierwasdevelopedwithanSVMpolynomialclassifier usingaverageEventRelatedPotential(ERP)anddifferentialaverageERPattributes.Thevisuallyevoked Electroencephalogram(EEG)signalswereacquiredfrom24subjects.Thefour-classclassificationaccuracy was83%usingaverageERPattributesand77%usingdifferentialaverageERPattributes.Inthesecond partofthestudy,themeditativeinterventionwasappliedto20subjectswhodeclaredthemselvesnegatively excited(inLowValenceHighArousalstateofemotion).TheEEGsignalswereacquiredbeforeandafter themeditativeintervention.Thefour-classsubjectindependentemotionclassifierdevelopedinStudy1 correctlyclassifiedthese20subjectstobeinanegativelyexcitedstateofemotion.Aftertheintervention,16 subjectsself-assessedthemselvestobeinapositiveunexcited(HVLA)stateofemotion(whichshowsthe interventionaccuracyof80%).Testingafour-classsubjectindependentemotionclassifierontheEEGdata acquiredafterthemeditativeinterventionvalidated13of16subjectsinapositiveunexcitedstate,yielding anaccuracyof81.3%.","PeriodicalId":18394,"journal":{"name":"Metrology and Measurement Systems","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition of emotions from the negatively excited state to positive unexcited state: an ERP perspective\",\"authors\":\"M. Singh, Mandeep Singh\",\"doi\":\"10.24425/mms.2022.140030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cognitive aspects like perception, problem-solving, thinking, task performance, etc., are immensely influenced by emotions making it necessary to study emotions. The best state of emotion is the positive unexcitedstate,alsoknownastheHighValenceLowArousal(HVLA)stateoftheemotion.Thepsychologists endeavourtobringthesubjectsfromanegativelyexcitedstateofemotion(LowValenceHighArousalstate) toapositiveunexcitedstateofemotion(HighValenceLowArousalstate).Inthefirstpartofthisstudy, afour-classsubjectindependentemotionclassifierwasdevelopedwithanSVMpolynomialclassifier usingaverageEventRelatedPotential(ERP)anddifferentialaverageERPattributes.Thevisuallyevoked Electroencephalogram(EEG)signalswereacquiredfrom24subjects.Thefour-classclassificationaccuracy was83%usingaverageERPattributesand77%usingdifferentialaverageERPattributes.Inthesecond partofthestudy,themeditativeinterventionwasappliedto20subjectswhodeclaredthemselvesnegatively excited(inLowValenceHighArousalstateofemotion).TheEEGsignalswereacquiredbeforeandafter themeditativeintervention.Thefour-classsubjectindependentemotionclassifierdevelopedinStudy1 correctlyclassifiedthese20subjectstobeinanegativelyexcitedstateofemotion.Aftertheintervention,16 subjectsself-assessedthemselvestobeinapositiveunexcited(HVLA)stateofemotion(whichshowsthe interventionaccuracyof80%).Testingafour-classsubjectindependentemotionclassifierontheEEGdata acquiredafterthemeditativeinterventionvalidated13of16subjectsinapositiveunexcitedstate,yielding anaccuracyof81.3%.\",\"PeriodicalId\":18394,\"journal\":{\"name\":\"Metrology and Measurement Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrology and Measurement Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/mms.2022.140030\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrology and Measurement Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/mms.2022.140030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Transition of emotions from the negatively excited state to positive unexcited state: an ERP perspective
The cognitive aspects like perception, problem-solving, thinking, task performance, etc., are immensely influenced by emotions making it necessary to study emotions. The best state of emotion is the positive unexcitedstate,alsoknownastheHighValenceLowArousal(HVLA)stateoftheemotion.Thepsychologists endeavourtobringthesubjectsfromanegativelyexcitedstateofemotion(LowValenceHighArousalstate) toapositiveunexcitedstateofemotion(HighValenceLowArousalstate).Inthefirstpartofthisstudy, afour-classsubjectindependentemotionclassifierwasdevelopedwithanSVMpolynomialclassifier usingaverageEventRelatedPotential(ERP)anddifferentialaverageERPattributes.Thevisuallyevoked Electroencephalogram(EEG)signalswereacquiredfrom24subjects.Thefour-classclassificationaccuracy was83%usingaverageERPattributesand77%usingdifferentialaverageERPattributes.Inthesecond partofthestudy,themeditativeinterventionwasappliedto20subjectswhodeclaredthemselvesnegatively excited(inLowValenceHighArousalstateofemotion).TheEEGsignalswereacquiredbeforeandafter themeditativeintervention.Thefour-classsubjectindependentemotionclassifierdevelopedinStudy1 correctlyclassifiedthese20subjectstobeinanegativelyexcitedstateofemotion.Aftertheintervention,16 subjectsself-assessedthemselvestobeinapositiveunexcited(HVLA)stateofemotion(whichshowsthe interventionaccuracyof80%).Testingafour-classsubjectindependentemotionclassifierontheEEGdata acquiredafterthemeditativeinterventionvalidated13of16subjectsinapositiveunexcitedstate,yielding anaccuracyof81.3%.
期刊介绍:
Contributions are invited on all aspects of the research, development and applications of the measurement science and technology.
The list of topics covered includes: theory and general principles of measurement; measurement of physical, chemical and biological quantities; medical measurements; sensors and transducers; measurement data acquisition; measurement signal transmission; processing and data analysis; measurement systems and embedded systems; design, manufacture and evaluation of instruments.
The average publication cycle is 6 months.