具有最大度正则映射的曲面

IF 0.9 1区 数学 Q2 MATHEMATICS
Carlos Rito
{"title":"具有最大度正则映射的曲面","authors":"Carlos Rito","doi":"10.1090/JAG/761","DOIUrl":null,"url":null,"abstract":"We use the Borisov-Keum equations of a fake projective plane and the Borisov-Yeung equations of the Cartwright-Steger surface to show the existence of a regular surface with canonical map of degree 36 and of an irregular surface with canonical map of degree 27. As a by-product, we get equations (over a finite field) for the \n\n \n \n \n Z\n \n \n /\n \n 3\n \n \\mathbb {Z}/3\n \n\n-invariant fibres of the Albanese fibration of the Cartwright-Steger surface and show that they are smooth.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Surfaces with canonical map of maximum degree\",\"authors\":\"Carlos Rito\",\"doi\":\"10.1090/JAG/761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the Borisov-Keum equations of a fake projective plane and the Borisov-Yeung equations of the Cartwright-Steger surface to show the existence of a regular surface with canonical map of degree 36 and of an irregular surface with canonical map of degree 27. As a by-product, we get equations (over a finite field) for the \\n\\n \\n \\n \\n Z\\n \\n \\n /\\n \\n 3\\n \\n \\\\mathbb {Z}/3\\n \\n\\n-invariant fibres of the Albanese fibration of the Cartwright-Steger surface and show that they are smooth.\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAG/761\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAG/761","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

利用伪投影平面的Borisov-Keum方程和Cartwright-Steger曲面的Borisov-Yeung方程,证明了具有36次正则映射的正则曲面和具有27次正则映射的不规则曲面的存在性。作为一个副产品,我们得到了Cartwright-Steger表面的Albanese纤维的Z /3 \mathbb {Z}/3不变纤维的方程(在有限域上),并证明它们是光滑的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surfaces with canonical map of maximum degree
We use the Borisov-Keum equations of a fake projective plane and the Borisov-Yeung equations of the Cartwright-Steger surface to show the existence of a regular surface with canonical map of degree 36 and of an irregular surface with canonical map of degree 27. As a by-product, we get equations (over a finite field) for the Z / 3 \mathbb {Z}/3 -invariant fibres of the Albanese fibration of the Cartwright-Steger surface and show that they are smooth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信