具有非线性和非齐次动态边界条件的非线性二阶各向异性反应扩散问题的适定性

IF 1.4 4区 数学 Q1 MATHEMATICS
M. Choban, Costică N. Moroșanu
{"title":"具有非线性和非齐次动态边界条件的非线性二阶各向异性反应扩散问题的适定性","authors":"M. Choban, Costică N. Moroșanu","doi":"10.37193/cjm.2022.01.08","DOIUrl":null,"url":null,"abstract":"The paper is concerned with a qualitative analysis for a nonlinear second-order boundary value problem, endowed with nonlinear and inhomogeneous dynamic boundary conditions, extending the types of bounday conditions already studied. Under certain assumptions on the input data: $f_{_1}(t,x)$, $w(t,x)$ and $u_0(x)$, we prove the well-posedness (the existence, a priori estimates, regularity and uniqueness) of a classical solution in the Sobolev space $W^{1,2}_p(Q)$. This extends previous works concerned with nonlinear dynamic boundary conditions, allowing to the present mathematical model to better approximate the real physical phenomena (the anisotropy effects, phase change in $\\Omega$ and at the boundary $\\partial\\Omega$, etc.).","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Well-posedness of a nonlinear second-order anisotropic reaction-diffusion problem with nonlinear and inhomogeneous dynamic boundary conditions\",\"authors\":\"M. Choban, Costică N. Moroșanu\",\"doi\":\"10.37193/cjm.2022.01.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is concerned with a qualitative analysis for a nonlinear second-order boundary value problem, endowed with nonlinear and inhomogeneous dynamic boundary conditions, extending the types of bounday conditions already studied. Under certain assumptions on the input data: $f_{_1}(t,x)$, $w(t,x)$ and $u_0(x)$, we prove the well-posedness (the existence, a priori estimates, regularity and uniqueness) of a classical solution in the Sobolev space $W^{1,2}_p(Q)$. This extends previous works concerned with nonlinear dynamic boundary conditions, allowing to the present mathematical model to better approximate the real physical phenomena (the anisotropy effects, phase change in $\\\\Omega$ and at the boundary $\\\\partial\\\\Omega$, etc.).\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2022.01.08\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.01.08","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文对一个具有非线性和非齐次动态边界条件的非线性二阶边值问题进行了定性分析,扩展了已有边界条件的类型。在对输入数据$f_{_1}(t,x)$、$w(t,x)$和$u_0(x)$的某些假设下,我们证明了Sobolev空间$w中经典解的适定性(存在性、先验估计、正则性和唯一性)^{1,2}_p(Q) $。这扩展了以前关于非线性动态边界条件的工作,使当前的数学模型能够更好地近似真实的物理现象(各向异性效应、$\Omega$和边界$\partial\Omega]处的相变等)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness of a nonlinear second-order anisotropic reaction-diffusion problem with nonlinear and inhomogeneous dynamic boundary conditions
The paper is concerned with a qualitative analysis for a nonlinear second-order boundary value problem, endowed with nonlinear and inhomogeneous dynamic boundary conditions, extending the types of bounday conditions already studied. Under certain assumptions on the input data: $f_{_1}(t,x)$, $w(t,x)$ and $u_0(x)$, we prove the well-posedness (the existence, a priori estimates, regularity and uniqueness) of a classical solution in the Sobolev space $W^{1,2}_p(Q)$. This extends previous works concerned with nonlinear dynamic boundary conditions, allowing to the present mathematical model to better approximate the real physical phenomena (the anisotropy effects, phase change in $\Omega$ and at the boundary $\partial\Omega$, etc.).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信