Conor C. Egan, B. F. Blackwell, E. Fernández‐Juricic, Page E. Klug
{"title":"测试将无人机用作恐怖设备的一个关键假设:鸟类认为无人机有风险吗?","authors":"Conor C. Egan, B. F. Blackwell, E. Fernández‐Juricic, Page E. Klug","doi":"10.1093/condor/duaa014","DOIUrl":null,"url":null,"abstract":"\n Wildlife managers have recently suggested the use of unmanned aircraft systems or drones as nonlethal hazing tools to deter birds from areas of human-wildlife conflict. However, it remains unclear if birds perceive common drone platforms as threatening. Based on field studies assessing behavioral and physiological responses, it is generally assumed that birds perceive less risk from drones than from predators. However, studies controlling for multiple confounding effects have not been conducted. Our goal was to establish the degree to which the perception of risk by birds would vary between common drone platforms relative to a predator model when flown at different approach types. We evaluated the behavioral responses of individual Red-winged Blackbirds (Agelaius phoeniceus) to 3 drone platforms: a predator model, a fixed-wing resembling an airplane, and a multirotor, approaching either head-on or overhead. Blackbirds became alert earlier (by 13.7 s), alarm-called more frequently (by a factor of 12), returned to forage later (by a factor of 4.7), and increased vigilance (by a factor of 1.3) in response to the predator model compared with the multirotor. Blackbirds also perceived the fixed-wing as riskier than the multirotor, but less risky than the predator model. Overhead approaches mostly failed to elicit flight in blackbirds across all platform types, and no blackbirds took flight in response to the multirotor at either overhead or head-on approaches. Our findings demonstrate that birds perceived drones with predatory characteristics as riskier than common drone models (i.e. fixed-wing and multirotor platforms). We recommend that drones be modified with additional stimuli to increase perceived risk when used as frightening devices, but avoided if used for wildlife monitoring.","PeriodicalId":50624,"journal":{"name":"Condor","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2020-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/condor/duaa014","citationCount":"23","resultStr":"{\"title\":\"Testing a key assumption of using drones as frightening devices: Do birds perceive drones as risky?\",\"authors\":\"Conor C. Egan, B. F. Blackwell, E. Fernández‐Juricic, Page E. Klug\",\"doi\":\"10.1093/condor/duaa014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Wildlife managers have recently suggested the use of unmanned aircraft systems or drones as nonlethal hazing tools to deter birds from areas of human-wildlife conflict. However, it remains unclear if birds perceive common drone platforms as threatening. Based on field studies assessing behavioral and physiological responses, it is generally assumed that birds perceive less risk from drones than from predators. However, studies controlling for multiple confounding effects have not been conducted. Our goal was to establish the degree to which the perception of risk by birds would vary between common drone platforms relative to a predator model when flown at different approach types. We evaluated the behavioral responses of individual Red-winged Blackbirds (Agelaius phoeniceus) to 3 drone platforms: a predator model, a fixed-wing resembling an airplane, and a multirotor, approaching either head-on or overhead. Blackbirds became alert earlier (by 13.7 s), alarm-called more frequently (by a factor of 12), returned to forage later (by a factor of 4.7), and increased vigilance (by a factor of 1.3) in response to the predator model compared with the multirotor. Blackbirds also perceived the fixed-wing as riskier than the multirotor, but less risky than the predator model. Overhead approaches mostly failed to elicit flight in blackbirds across all platform types, and no blackbirds took flight in response to the multirotor at either overhead or head-on approaches. Our findings demonstrate that birds perceived drones with predatory characteristics as riskier than common drone models (i.e. fixed-wing and multirotor platforms). We recommend that drones be modified with additional stimuli to increase perceived risk when used as frightening devices, but avoided if used for wildlife monitoring.\",\"PeriodicalId\":50624,\"journal\":{\"name\":\"Condor\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2020-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/condor/duaa014\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condor\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/condor/duaa014\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORNITHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condor","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/condor/duaa014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORNITHOLOGY","Score":null,"Total":0}
Testing a key assumption of using drones as frightening devices: Do birds perceive drones as risky?
Wildlife managers have recently suggested the use of unmanned aircraft systems or drones as nonlethal hazing tools to deter birds from areas of human-wildlife conflict. However, it remains unclear if birds perceive common drone platforms as threatening. Based on field studies assessing behavioral and physiological responses, it is generally assumed that birds perceive less risk from drones than from predators. However, studies controlling for multiple confounding effects have not been conducted. Our goal was to establish the degree to which the perception of risk by birds would vary between common drone platforms relative to a predator model when flown at different approach types. We evaluated the behavioral responses of individual Red-winged Blackbirds (Agelaius phoeniceus) to 3 drone platforms: a predator model, a fixed-wing resembling an airplane, and a multirotor, approaching either head-on or overhead. Blackbirds became alert earlier (by 13.7 s), alarm-called more frequently (by a factor of 12), returned to forage later (by a factor of 4.7), and increased vigilance (by a factor of 1.3) in response to the predator model compared with the multirotor. Blackbirds also perceived the fixed-wing as riskier than the multirotor, but less risky than the predator model. Overhead approaches mostly failed to elicit flight in blackbirds across all platform types, and no blackbirds took flight in response to the multirotor at either overhead or head-on approaches. Our findings demonstrate that birds perceived drones with predatory characteristics as riskier than common drone models (i.e. fixed-wing and multirotor platforms). We recommend that drones be modified with additional stimuli to increase perceived risk when used as frightening devices, but avoided if used for wildlife monitoring.
期刊介绍:
The Condor is the official publication of the Cooper Ornithological Society, a non-profit organization of over 2,000 professional and amateur ornithologists and one of the largest ornithological societies in the world. A quarterly international journal that publishes original research from all fields of avian biology, The Condor has been a highly respected forum in ornithology for more than 100 years. The journal is one of the top ranked ornithology publications. Types of paper published include feature articles (longer manuscripts) Short Communications (generally shorter papers or papers that deal with one primary finding), Commentaries (brief papers that comment on articles published previously in The Condor), and Book Reviews.