Sen Yang, Hua Jiang, Meng Qian, Guangbo Ji, Yongzhen Wei, Ju He, H. Tian, Qiang Zhao
{"title":"在大型皮肤伤口模型中,msc衍生的sev负载透明质酸水凝胶通过免疫调节促进无疤痕皮肤愈合","authors":"Sen Yang, Hua Jiang, Meng Qian, Guangbo Ji, Yongzhen Wei, Ju He, H. Tian, Qiang Zhao","doi":"10.1088/1748-605X/ac68bc","DOIUrl":null,"url":null,"abstract":"Designing hydrogel-based constructs capable of adjusting immune cell functions holds promise for skin tissue regeneration. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention owing to their anti-inflammatory and proangiogenic effects. Herein, we constructed a biofunctional hydrogel in which MSC-derived sEVs were incorporated into the injectable hyaluronic acid hydrogel, thus endowing the hydrogel with immunomodulatory effects. When implanted onto the wound site in a mouse large skin injury model, this functional hydrogel facilitates wound healing and inhibits scar tissue formation by driving macrophages towards an anti-inflammatory and anti-fibrotic (M2c) phenotype. Further investigation showed that the M2c-like phenotype induced by MSC-derived sEVs markedly inhibited the activation of fibroblasts, which could result in scarless skin wound healing. Taken together, these results suggest that modulation of the immune response is a promising and efficient approach to prevent fibrotic scar formation.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"MSC-derived sEV-loaded hyaluronan hydrogel promotes scarless skin healing by immunomodulation in a large skin wound model\",\"authors\":\"Sen Yang, Hua Jiang, Meng Qian, Guangbo Ji, Yongzhen Wei, Ju He, H. Tian, Qiang Zhao\",\"doi\":\"10.1088/1748-605X/ac68bc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing hydrogel-based constructs capable of adjusting immune cell functions holds promise for skin tissue regeneration. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention owing to their anti-inflammatory and proangiogenic effects. Herein, we constructed a biofunctional hydrogel in which MSC-derived sEVs were incorporated into the injectable hyaluronic acid hydrogel, thus endowing the hydrogel with immunomodulatory effects. When implanted onto the wound site in a mouse large skin injury model, this functional hydrogel facilitates wound healing and inhibits scar tissue formation by driving macrophages towards an anti-inflammatory and anti-fibrotic (M2c) phenotype. Further investigation showed that the M2c-like phenotype induced by MSC-derived sEVs markedly inhibited the activation of fibroblasts, which could result in scarless skin wound healing. Taken together, these results suggest that modulation of the immune response is a promising and efficient approach to prevent fibrotic scar formation.\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ac68bc\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ac68bc","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
MSC-derived sEV-loaded hyaluronan hydrogel promotes scarless skin healing by immunomodulation in a large skin wound model
Designing hydrogel-based constructs capable of adjusting immune cell functions holds promise for skin tissue regeneration. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention owing to their anti-inflammatory and proangiogenic effects. Herein, we constructed a biofunctional hydrogel in which MSC-derived sEVs were incorporated into the injectable hyaluronic acid hydrogel, thus endowing the hydrogel with immunomodulatory effects. When implanted onto the wound site in a mouse large skin injury model, this functional hydrogel facilitates wound healing and inhibits scar tissue formation by driving macrophages towards an anti-inflammatory and anti-fibrotic (M2c) phenotype. Further investigation showed that the M2c-like phenotype induced by MSC-derived sEVs markedly inhibited the activation of fibroblasts, which could result in scarless skin wound healing. Taken together, these results suggest that modulation of the immune response is a promising and efficient approach to prevent fibrotic scar formation.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters