{"title":"基于感应电机的混合水泵系统鲁棒非线性控制","authors":"Zakaria Massaq, A. Abounada, M. Ramzi","doi":"10.11591/IJPEDS.V11.I4.PP1995-2006","DOIUrl":null,"url":null,"abstract":"This contribution presents a non-linear control of a hybrid pumping system supplied with a photovoltaic generator and a battery. This system is employed for delivering a continuous volume of water whatever the climatic conditions. In the DC side, a boost converter is controlled with the indirect double integral sliding mode controller (DISMC) for maximum power point tracking (MPPT). The DISMC is suitable for MPPT because it gives a fast response and reduces the amplitude of power oscillations. Then, a bidirectional buck-boost converter is adopted to ensure the energy management between the battery and the DC-bus, and this converter is controlled with integral sliding mode control (ISMC) theory. The non-linear predictive control (NPC) is chosen to drive an induction motor (IM), the NPC is known by its fast dynamic and high capacity to reject disturbances. The hybrid system is modelled in MATLAB/Simulink software. During simulations, the DISMC-MPPT is compared with other techniques such as sliding mode controller (SMC) MPPT and integral SMC MPPT, the DISMC provides the best tracking performances under different irradiances. Moreover, the designed controller for the bidirectional converter regulates the DC-link voltage with better performances than the classical PI controller. Lastly, the NPC regulates the speed of the IM with high robustness.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"11 1","pages":"1995-2006"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust non-linear control of a hybrid water pumping system based on induction motor\",\"authors\":\"Zakaria Massaq, A. Abounada, M. Ramzi\",\"doi\":\"10.11591/IJPEDS.V11.I4.PP1995-2006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution presents a non-linear control of a hybrid pumping system supplied with a photovoltaic generator and a battery. This system is employed for delivering a continuous volume of water whatever the climatic conditions. In the DC side, a boost converter is controlled with the indirect double integral sliding mode controller (DISMC) for maximum power point tracking (MPPT). The DISMC is suitable for MPPT because it gives a fast response and reduces the amplitude of power oscillations. Then, a bidirectional buck-boost converter is adopted to ensure the energy management between the battery and the DC-bus, and this converter is controlled with integral sliding mode control (ISMC) theory. The non-linear predictive control (NPC) is chosen to drive an induction motor (IM), the NPC is known by its fast dynamic and high capacity to reject disturbances. The hybrid system is modelled in MATLAB/Simulink software. During simulations, the DISMC-MPPT is compared with other techniques such as sliding mode controller (SMC) MPPT and integral SMC MPPT, the DISMC provides the best tracking performances under different irradiances. Moreover, the designed controller for the bidirectional converter regulates the DC-link voltage with better performances than the classical PI controller. Lastly, the NPC regulates the speed of the IM with high robustness.\",\"PeriodicalId\":38280,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems\",\"volume\":\"11 1\",\"pages\":\"1995-2006\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJPEDS.V11.I4.PP1995-2006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V11.I4.PP1995-2006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Robust non-linear control of a hybrid water pumping system based on induction motor
This contribution presents a non-linear control of a hybrid pumping system supplied with a photovoltaic generator and a battery. This system is employed for delivering a continuous volume of water whatever the climatic conditions. In the DC side, a boost converter is controlled with the indirect double integral sliding mode controller (DISMC) for maximum power point tracking (MPPT). The DISMC is suitable for MPPT because it gives a fast response and reduces the amplitude of power oscillations. Then, a bidirectional buck-boost converter is adopted to ensure the energy management between the battery and the DC-bus, and this converter is controlled with integral sliding mode control (ISMC) theory. The non-linear predictive control (NPC) is chosen to drive an induction motor (IM), the NPC is known by its fast dynamic and high capacity to reject disturbances. The hybrid system is modelled in MATLAB/Simulink software. During simulations, the DISMC-MPPT is compared with other techniques such as sliding mode controller (SMC) MPPT and integral SMC MPPT, the DISMC provides the best tracking performances under different irradiances. Moreover, the designed controller for the bidirectional converter regulates the DC-link voltage with better performances than the classical PI controller. Lastly, the NPC regulates the speed of the IM with high robustness.
期刊介绍:
International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.