{"title":"KMS在$C_c^{*}(\\mathbb{N}^2)$上的状态","authors":"Anbu Arjunan, Sruthymurali, S. Sundar","doi":"10.1017/S0017089523000071","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$C_c^{*}(\\mathbb{N}^{2})$\n be the universal \n$C^{*}$\n -algebra generated by a semigroup of isometries \n$\\{v_{(m,n)}\\,:\\, m,n \\in \\mathbb{N}\\}$\n whose range projections commute. We analyse the structure of KMS states on \n$C_{c}^{*}(\\mathbb{N}^2)$\n for the time evolution determined by a homomorphism \n$c\\,:\\,\\mathbb{Z}^{2} \\to \\mathbb{R}$\n . In contrast to the reduced version \n$C_{red}^{*}(\\mathbb{N}^{2})$\n , we show that the set of KMS states on \n$C_{c}^{*}(\\mathbb{N}^{2})$\n has a rich structure. In particular, we exhibit uncountably many extremal KMS states of type I, II and III.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"KMS states on \\n$C_c^{*}(\\\\mathbb{N}^2)$\",\"authors\":\"Anbu Arjunan, Sruthymurali, S. Sundar\",\"doi\":\"10.1017/S0017089523000071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$C_c^{*}(\\\\mathbb{N}^{2})$\\n be the universal \\n$C^{*}$\\n -algebra generated by a semigroup of isometries \\n$\\\\{v_{(m,n)}\\\\,:\\\\, m,n \\\\in \\\\mathbb{N}\\\\}$\\n whose range projections commute. We analyse the structure of KMS states on \\n$C_{c}^{*}(\\\\mathbb{N}^2)$\\n for the time evolution determined by a homomorphism \\n$c\\\\,:\\\\,\\\\mathbb{Z}^{2} \\\\to \\\\mathbb{R}$\\n . In contrast to the reduced version \\n$C_{red}^{*}(\\\\mathbb{N}^{2})$\\n , we show that the set of KMS states on \\n$C_{c}^{*}(\\\\mathbb{N}^{2})$\\n has a rich structure. In particular, we exhibit uncountably many extremal KMS states of type I, II and III.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089523000071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089523000071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
摘要设$C_C^{*}(\mathbb{N}^{2})$是区间投影可交换的等距$\{v_{(m,N)}\,:\,m,N\in\mathbb{N}\}$的半群生成的泛$C^{*}$代数。我们分析了由同态$C\,:\,\mathbb{Z}^{2}\ to \mathbb{R}$确定的时间演化的$C_{C}^}*}(\mathbb}N}^2)$上的KMS态的结构。与简化版本$C_{red}^{*}(\mathbb{N}^{2})$相反,我们证明了$C_{C}^(*})上的KMS状态集具有丰富的结构。特别地,我们展示了无数类型I、II和III的极端KMS状态。
Abstract Let
$C_c^{*}(\mathbb{N}^{2})$
be the universal
$C^{*}$
-algebra generated by a semigroup of isometries
$\{v_{(m,n)}\,:\, m,n \in \mathbb{N}\}$
whose range projections commute. We analyse the structure of KMS states on
$C_{c}^{*}(\mathbb{N}^2)$
for the time evolution determined by a homomorphism
$c\,:\,\mathbb{Z}^{2} \to \mathbb{R}$
. In contrast to the reduced version
$C_{red}^{*}(\mathbb{N}^{2})$
, we show that the set of KMS states on
$C_{c}^{*}(\mathbb{N}^{2})$
has a rich structure. In particular, we exhibit uncountably many extremal KMS states of type I, II and III.