{"title":"混杂纤维增强混凝土的动态力学性能","authors":"Yong Zhang, Li Chen, Dongbao Zhou","doi":"10.1177/20414196211065480","DOIUrl":null,"url":null,"abstract":"In this study, the dynamic mechanical properties of hybrid fiber reinforced concrete (HFRC) are analyzed with respect to failure mode, dynamic increase factor (DIF), and peak strain by means of a SHPB testing apparatus. The factors that influence the dynamic mechanical properties include fiber type and fiber content. It is concluded that the best dynamic mechanical properties of fibers are CS-PHFRC at medium and low strain rates and AS-PHFRC at a high strain rate. Within a certain range, the higher the fiber content is, the larger the DIF of the corresponding HFRC and the more obvious the increase in dynamic compressive strength. AS-CSHFRC improves the dynamic compressive deformability of the HFRC. The polypropylene fiber causes plasticity, as shown in the failure mode of concrete. The Ottosen nonlinear elastic model, modified by introducing the damage factor, can better describe the dynamic mechanical properties of HFRC.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic mechanical properties of hybrid fiber reinforced concrete\",\"authors\":\"Yong Zhang, Li Chen, Dongbao Zhou\",\"doi\":\"10.1177/20414196211065480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the dynamic mechanical properties of hybrid fiber reinforced concrete (HFRC) are analyzed with respect to failure mode, dynamic increase factor (DIF), and peak strain by means of a SHPB testing apparatus. The factors that influence the dynamic mechanical properties include fiber type and fiber content. It is concluded that the best dynamic mechanical properties of fibers are CS-PHFRC at medium and low strain rates and AS-PHFRC at a high strain rate. Within a certain range, the higher the fiber content is, the larger the DIF of the corresponding HFRC and the more obvious the increase in dynamic compressive strength. AS-CSHFRC improves the dynamic compressive deformability of the HFRC. The polypropylene fiber causes plasticity, as shown in the failure mode of concrete. The Ottosen nonlinear elastic model, modified by introducing the damage factor, can better describe the dynamic mechanical properties of HFRC.\",\"PeriodicalId\":46272,\"journal\":{\"name\":\"International Journal of Protective Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Protective Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20414196211065480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Protective Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20414196211065480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Dynamic mechanical properties of hybrid fiber reinforced concrete
In this study, the dynamic mechanical properties of hybrid fiber reinforced concrete (HFRC) are analyzed with respect to failure mode, dynamic increase factor (DIF), and peak strain by means of a SHPB testing apparatus. The factors that influence the dynamic mechanical properties include fiber type and fiber content. It is concluded that the best dynamic mechanical properties of fibers are CS-PHFRC at medium and low strain rates and AS-PHFRC at a high strain rate. Within a certain range, the higher the fiber content is, the larger the DIF of the corresponding HFRC and the more obvious the increase in dynamic compressive strength. AS-CSHFRC improves the dynamic compressive deformability of the HFRC. The polypropylene fiber causes plasticity, as shown in the failure mode of concrete. The Ottosen nonlinear elastic model, modified by introducing the damage factor, can better describe the dynamic mechanical properties of HFRC.