{"title":"$\\textbf中的多面体群{G}_{\\textbf{2}}(\\mathbb C)$","authors":"V. Knibbeler, S. Lombardo, Casper Oelen","doi":"10.1017/S0017089522000283","DOIUrl":null,"url":null,"abstract":"Abstract We classify embeddings of the finite groups \n$A_4$\n , \n$S_4$\n and \n$A_5$\n in the Lie group \n$G_2(\\mathbb C)$\n up to conjugation.","PeriodicalId":50417,"journal":{"name":"Glasgow Mathematical Journal","volume":"65 1","pages":"S123 - S128"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyhedral groups in \\n$\\\\textbf{G}_{\\\\textbf{2}}(\\\\mathbb C)$\",\"authors\":\"V. Knibbeler, S. Lombardo, Casper Oelen\",\"doi\":\"10.1017/S0017089522000283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We classify embeddings of the finite groups \\n$A_4$\\n , \\n$S_4$\\n and \\n$A_5$\\n in the Lie group \\n$G_2(\\\\mathbb C)$\\n up to conjugation.\",\"PeriodicalId\":50417,\"journal\":{\"name\":\"Glasgow Mathematical Journal\",\"volume\":\"65 1\",\"pages\":\"S123 - S128\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glasgow Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089522000283\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glasgow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089522000283","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Glasgow Mathematical Journal publishes original research papers in any branch of pure and applied mathematics. An international journal, its policy is to feature a wide variety of research areas, which in recent issues have included ring theory, group theory, functional analysis, combinatorics, differential equations, differential geometry, number theory, algebraic topology, and the application of such methods in applied mathematics.
The journal has a web-based submission system for articles. For details of how to to upload your paper see GMJ - Online Submission Guidelines or go directly to the submission site.