E. A. Algehyne, Fuad S. Alduais, A. Saeed, Abdullah Dawar, M. Ramzan, P. Kumam
{"title":"构建旋转圆盘上水基混合纳米流体流动的水热意义","authors":"E. A. Algehyne, Fuad S. Alduais, A. Saeed, Abdullah Dawar, M. Ramzan, P. Kumam","doi":"10.1515/ijnsns-2022-0137","DOIUrl":null,"url":null,"abstract":"Abstract In this article, the authors have presented the MHD hybrid nanoliquid flow comprised of CuO and Ag nanoparticles (nps) over a rotating disk under the effects of thermophoresis, Brownian motion, activation energy, heat source and chemical reaction. The flow is considered over a spinning disc with convective conditions. The proposed model is solved with the help of HAM. The convergence of the HAM is also shown in order to verify the convergence of the modeled problem. The effects of embedded parameters on the velocity, energy and mass profiles of the magnetohydrodynamic flow of hybrid nanoliquid are shown with the help of Figures. Also, the effects of embedded parameters on skin friction, heat and mass transfer rate are calculated with the help of Tables. The results showed that the velocity and energy profiles are augmented with the increasing solid volume fraction. The increasing magnetic parameter reduces both the radial and tangential velocities of the hybrid nanofluid flow. The increasing effects of heat source, thermophoresis and Brownian motion factors on energy profiles are found. The increasing influence of thermophoresis and activation energy factors on concentration profile of the hybrid nanofluid flow is found, while the increasing Brownian motion, chemical reaction and Schmidt number reduce the concentration profile.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Framing the hydrothermal significance of water-based hybrid nanofluid flow over a revolving disk\",\"authors\":\"E. A. Algehyne, Fuad S. Alduais, A. Saeed, Abdullah Dawar, M. Ramzan, P. Kumam\",\"doi\":\"10.1515/ijnsns-2022-0137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, the authors have presented the MHD hybrid nanoliquid flow comprised of CuO and Ag nanoparticles (nps) over a rotating disk under the effects of thermophoresis, Brownian motion, activation energy, heat source and chemical reaction. The flow is considered over a spinning disc with convective conditions. The proposed model is solved with the help of HAM. The convergence of the HAM is also shown in order to verify the convergence of the modeled problem. The effects of embedded parameters on the velocity, energy and mass profiles of the magnetohydrodynamic flow of hybrid nanoliquid are shown with the help of Figures. Also, the effects of embedded parameters on skin friction, heat and mass transfer rate are calculated with the help of Tables. The results showed that the velocity and energy profiles are augmented with the increasing solid volume fraction. The increasing magnetic parameter reduces both the radial and tangential velocities of the hybrid nanofluid flow. The increasing effects of heat source, thermophoresis and Brownian motion factors on energy profiles are found. The increasing influence of thermophoresis and activation energy factors on concentration profile of the hybrid nanofluid flow is found, while the increasing Brownian motion, chemical reaction and Schmidt number reduce the concentration profile.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2022-0137\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2022-0137","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Framing the hydrothermal significance of water-based hybrid nanofluid flow over a revolving disk
Abstract In this article, the authors have presented the MHD hybrid nanoliquid flow comprised of CuO and Ag nanoparticles (nps) over a rotating disk under the effects of thermophoresis, Brownian motion, activation energy, heat source and chemical reaction. The flow is considered over a spinning disc with convective conditions. The proposed model is solved with the help of HAM. The convergence of the HAM is also shown in order to verify the convergence of the modeled problem. The effects of embedded parameters on the velocity, energy and mass profiles of the magnetohydrodynamic flow of hybrid nanoliquid are shown with the help of Figures. Also, the effects of embedded parameters on skin friction, heat and mass transfer rate are calculated with the help of Tables. The results showed that the velocity and energy profiles are augmented with the increasing solid volume fraction. The increasing magnetic parameter reduces both the radial and tangential velocities of the hybrid nanofluid flow. The increasing effects of heat source, thermophoresis and Brownian motion factors on energy profiles are found. The increasing influence of thermophoresis and activation energy factors on concentration profile of the hybrid nanofluid flow is found, while the increasing Brownian motion, chemical reaction and Schmidt number reduce the concentration profile.
期刊介绍:
The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.