{"title":"关于富压缩和富非扩张映射的不动点","authors":"S. Salisu, P. Kumam, Songpon Sriwongsa","doi":"10.37193/cjm.2023.01.16","DOIUrl":null,"url":null,"abstract":"We apply the concept of quasilinearization to introduce some enriched classes of Banach contraction mappings and analyse the fixed points of such mappings in the setting of Hadamard spaces. We establish existence and uniqueness of the fixed point of such mappings. To approximate the fixed points, we use an appropriate Krasnoselskij-type scheme for which we establish $\\Delta$ and strong convergence theorems. Furthermore, we discuss the fixed points of local enriched contractions and Maia-type enriched contractions in Hadamard spaces setting. In addition, we establish demiclosedness-type property of enriched nonexpansive mappings. Finally, we present some special cases and corresponding fixed point theorems.","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Fixed Points of Enriched Contractions and Enriched Nonexpansive Mappings\",\"authors\":\"S. Salisu, P. Kumam, Songpon Sriwongsa\",\"doi\":\"10.37193/cjm.2023.01.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the concept of quasilinearization to introduce some enriched classes of Banach contraction mappings and analyse the fixed points of such mappings in the setting of Hadamard spaces. We establish existence and uniqueness of the fixed point of such mappings. To approximate the fixed points, we use an appropriate Krasnoselskij-type scheme for which we establish $\\\\Delta$ and strong convergence theorems. Furthermore, we discuss the fixed points of local enriched contractions and Maia-type enriched contractions in Hadamard spaces setting. In addition, we establish demiclosedness-type property of enriched nonexpansive mappings. Finally, we present some special cases and corresponding fixed point theorems.\",\"PeriodicalId\":50711,\"journal\":{\"name\":\"Carpathian Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37193/cjm.2023.01.16\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2023.01.16","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Fixed Points of Enriched Contractions and Enriched Nonexpansive Mappings
We apply the concept of quasilinearization to introduce some enriched classes of Banach contraction mappings and analyse the fixed points of such mappings in the setting of Hadamard spaces. We establish existence and uniqueness of the fixed point of such mappings. To approximate the fixed points, we use an appropriate Krasnoselskij-type scheme for which we establish $\Delta$ and strong convergence theorems. Furthermore, we discuss the fixed points of local enriched contractions and Maia-type enriched contractions in Hadamard spaces setting. In addition, we establish demiclosedness-type property of enriched nonexpansive mappings. Finally, we present some special cases and corresponding fixed point theorems.
期刊介绍:
Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.