J. N. Williams, J. A. Morandé, M. G. Vaghti, J Medellín-Azuara, J. H. Viers
{"title":"葡萄园景观中的生态系统服务:关注地上碳的储存和积累","authors":"J. N. Williams, J. A. Morandé, M. G. Vaghti, J Medellín-Azuara, J. H. Viers","doi":"10.1186/s13021-020-00158-z","DOIUrl":null,"url":null,"abstract":"<p>Organic viticulture can generate a range of ecosystem services including supporting biodiversity, reducing the use of conventional pesticides and fertilizers, and mitigating greenhouse gas emissions through long-term carbon (C) storage. Here we focused on aboveground C storage rates and accumulation using a one-year increment analysis applied across different winegrape varietals and different-aged vineyard blocks. This produced a chronosequence of C storage rates over what is roughly the productive lifespan of most vines (aged 2–30?years). To our knowledge, this study provides the first estimate of C storage rates in the woody biomass of vines. Additionally, we assessed C storage in wildland buffers and adjacent oak-dominated habitats over a 9-year period.</p><p>Carbon storage averaged 6.5?Mg/Ha in vines. We found the average annual increase in woody C storage was 43% by mass. Variation correlated most strongly with vine age, where the younger the vine, the greater the relative increase in annual C. Decreases in C increment rates with vine age were more than offset by the greater overall biomass of older vines, such that C on the landscape continued to increase over the life of the vines at 18.5% per year on average. Varietal did not significantly affect storage rates or total C stored. Carbon storage averaged 81.7?Mg/Ha in native perennial buffer vegetation; we found an 11% increase in mass over 9?years for oak woodlands and savannas.</p><p>Despite a decrease in the annual rate of C accumulation as vines age, we found a net increase in aboveground C in the woody biomass of vines. The results indicate the positive role that older vines play in on-farm (vineyard) C and overall aboveground accumulation rates. Additionally, we found that the conservation of native perennial vegetation as vineyard buffers and edge habitats contributes substantially to overall C stores. We recommend that future research consider longer time horizons for increment analysis, as this should improve the precision of C accumulation rate estimates, including in belowground (i.e., soil) reservoirs.</p>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"15 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13021-020-00158-z","citationCount":"7","resultStr":"{\"title\":\"Ecosystem services in vineyard landscapes: a focus on aboveground carbon storage and accumulation\",\"authors\":\"J. N. Williams, J. A. Morandé, M. G. Vaghti, J Medellín-Azuara, J. H. Viers\",\"doi\":\"10.1186/s13021-020-00158-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Organic viticulture can generate a range of ecosystem services including supporting biodiversity, reducing the use of conventional pesticides and fertilizers, and mitigating greenhouse gas emissions through long-term carbon (C) storage. Here we focused on aboveground C storage rates and accumulation using a one-year increment analysis applied across different winegrape varietals and different-aged vineyard blocks. This produced a chronosequence of C storage rates over what is roughly the productive lifespan of most vines (aged 2–30?years). To our knowledge, this study provides the first estimate of C storage rates in the woody biomass of vines. Additionally, we assessed C storage in wildland buffers and adjacent oak-dominated habitats over a 9-year period.</p><p>Carbon storage averaged 6.5?Mg/Ha in vines. We found the average annual increase in woody C storage was 43% by mass. Variation correlated most strongly with vine age, where the younger the vine, the greater the relative increase in annual C. Decreases in C increment rates with vine age were more than offset by the greater overall biomass of older vines, such that C on the landscape continued to increase over the life of the vines at 18.5% per year on average. Varietal did not significantly affect storage rates or total C stored. Carbon storage averaged 81.7?Mg/Ha in native perennial buffer vegetation; we found an 11% increase in mass over 9?years for oak woodlands and savannas.</p><p>Despite a decrease in the annual rate of C accumulation as vines age, we found a net increase in aboveground C in the woody biomass of vines. The results indicate the positive role that older vines play in on-farm (vineyard) C and overall aboveground accumulation rates. Additionally, we found that the conservation of native perennial vegetation as vineyard buffers and edge habitats contributes substantially to overall C stores. We recommend that future research consider longer time horizons for increment analysis, as this should improve the precision of C accumulation rate estimates, including in belowground (i.e., soil) reservoirs.</p>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13021-020-00158-z\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13021-020-00158-z\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-020-00158-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ecosystem services in vineyard landscapes: a focus on aboveground carbon storage and accumulation
Organic viticulture can generate a range of ecosystem services including supporting biodiversity, reducing the use of conventional pesticides and fertilizers, and mitigating greenhouse gas emissions through long-term carbon (C) storage. Here we focused on aboveground C storage rates and accumulation using a one-year increment analysis applied across different winegrape varietals and different-aged vineyard blocks. This produced a chronosequence of C storage rates over what is roughly the productive lifespan of most vines (aged 2–30?years). To our knowledge, this study provides the first estimate of C storage rates in the woody biomass of vines. Additionally, we assessed C storage in wildland buffers and adjacent oak-dominated habitats over a 9-year period.
Carbon storage averaged 6.5?Mg/Ha in vines. We found the average annual increase in woody C storage was 43% by mass. Variation correlated most strongly with vine age, where the younger the vine, the greater the relative increase in annual C. Decreases in C increment rates with vine age were more than offset by the greater overall biomass of older vines, such that C on the landscape continued to increase over the life of the vines at 18.5% per year on average. Varietal did not significantly affect storage rates or total C stored. Carbon storage averaged 81.7?Mg/Ha in native perennial buffer vegetation; we found an 11% increase in mass over 9?years for oak woodlands and savannas.
Despite a decrease in the annual rate of C accumulation as vines age, we found a net increase in aboveground C in the woody biomass of vines. The results indicate the positive role that older vines play in on-farm (vineyard) C and overall aboveground accumulation rates. Additionally, we found that the conservation of native perennial vegetation as vineyard buffers and edge habitats contributes substantially to overall C stores. We recommend that future research consider longer time horizons for increment analysis, as this should improve the precision of C accumulation rate estimates, including in belowground (i.e., soil) reservoirs.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.