用PID控制器实现C-MANTEC Conn算法的高效VLSI实现

J. Caleb, M. Kannan
{"title":"用PID控制器实现C-MANTEC Conn算法的高效VLSI实现","authors":"J. Caleb, M. Kannan","doi":"10.4236/CS.2017.811018","DOIUrl":null,"url":null,"abstract":"Through the research on the existing C-MANTEC neural network and PID control technology, this paper presents an improved C-MANTEC algorithm based on PID control system. The combining of the artificial neural networks with conventional PID control helps in exploring their respective advantages to forming the intelligent PID control. From UCI Repository cancer dataset, the developed system is tested. The results show that the scheme can not only improve the speed of the algorithm in the training process but also improve the generalization capability of the network, which further enhances the performance of PID controllers. The overall power consumed is also reduced to a greater extent.","PeriodicalId":63422,"journal":{"name":"电路与系统(英文)","volume":"08 1","pages":"253-260"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient VLSI Implementation of the C-MANTEC Conn Algorithm by Using PID Controllers\",\"authors\":\"J. Caleb, M. Kannan\",\"doi\":\"10.4236/CS.2017.811018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through the research on the existing C-MANTEC neural network and PID control technology, this paper presents an improved C-MANTEC algorithm based on PID control system. The combining of the artificial neural networks with conventional PID control helps in exploring their respective advantages to forming the intelligent PID control. From UCI Repository cancer dataset, the developed system is tested. The results show that the scheme can not only improve the speed of the algorithm in the training process but also improve the generalization capability of the network, which further enhances the performance of PID controllers. The overall power consumed is also reduced to a greater extent.\",\"PeriodicalId\":63422,\"journal\":{\"name\":\"电路与系统(英文)\",\"volume\":\"08 1\",\"pages\":\"253-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/CS.2017.811018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/CS.2017.811018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过对现有C-MANTEC神经网络和PID控制技术的研究,提出了一种基于PID控制系统的改进C-MANTEC算法。将人工神经网络与传统PID控制相结合,有助于探索它们各自的优势,形成智能PID控制。从UCI知识库癌症数据集,对所开发的系统进行了测试。结果表明,该方案不仅提高了算法在训练过程中的速度,而且提高了网络的泛化能力,进一步提高了PID控制器的性能。消耗的总功率也在更大程度上减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient VLSI Implementation of the C-MANTEC Conn Algorithm by Using PID Controllers
Through the research on the existing C-MANTEC neural network and PID control technology, this paper presents an improved C-MANTEC algorithm based on PID control system. The combining of the artificial neural networks with conventional PID control helps in exploring their respective advantages to forming the intelligent PID control. From UCI Repository cancer dataset, the developed system is tested. The results show that the scheme can not only improve the speed of the algorithm in the training process but also improve the generalization capability of the network, which further enhances the performance of PID controllers. The overall power consumed is also reduced to a greater extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
273
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信