Mg-3%Zn /5%β-Ca3(PO4)2多孔骨组织工程复合支架的腐蚀行为及生物相容性研究

Mingying Tang, Yangjun Yan, Jianan Ouyang, Kun Yu, Congcong Liu, Xiaohua Zhou, Zhenting Wang, Youwen Deng, C. Shuai
{"title":"Mg-3%Zn /5%β-Ca3(PO4)2多孔骨组织工程复合支架的腐蚀行为及生物相容性研究","authors":"Mingying Tang, Yangjun Yan, Jianan Ouyang, Kun Yu, Congcong Liu, Xiaohua Zhou, Zhenting Wang, Youwen Deng, C. Shuai","doi":"10.1177/2280800019857064","DOIUrl":null,"url":null,"abstract":"Background: Rapid corrosion rates are a major impediment to the use of magnesium alloys in bone tissue engineering despite their good mechanical properties and biodegradability. Zinc is a promising alloy element, and it is an effective grain refiner for magnesium. β-Ca3(PO4)2 (β-TCP) is widely used for bone regeneration because of its good biocompatibility, and it also has a similar chemical and crystal structure to human bone. Methods: In this research, the magnesium alloy was reinforced by adding 3%Zn (wt.%) and 5%β-TCP (wt.%) particles in order to improve the corrosion resistance and biocompatibility. Furthermore, the biomaterial was prepared through powder metallurgy technology using NH4HCO3 as space-holding particles to construct porous Mg–3%Zn/5%β-TCP scaffolds. Results: The results revealed that the magnesium-zinc phase and calcium phosphate phase were uniformly distributed in the α-magnesium matrix. Mechanical and corrosion tests indicated that the scaffolds had mechanical strengths similar to that of human bone, and their corrosion resistance decreased with an increase in the porosity. The scaffolds had cytotoxicity grades of 0–1 against MG63 cells, SaoS2 cells, and HK-2 cells, which suggested that they were appropriate for cellular applications. In addition, the scaffolds demonstrated excellent biocompatibility when tested in rabbits. Conclusions: These results indicate that porous Mg–3%Zn/5%β-TCP scaffolds are promising biodegradable implants for bone tissue engineering.","PeriodicalId":51074,"journal":{"name":"Journal of Applied Biomaterials & Biomechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2280800019857064","citationCount":"2","resultStr":"{\"title\":\"Research on corrosion behavior and biocompatibility of a porous Mg–3%Zn/5%β-Ca3(PO4)2 composite scaffold for bone tissue engineering\",\"authors\":\"Mingying Tang, Yangjun Yan, Jianan Ouyang, Kun Yu, Congcong Liu, Xiaohua Zhou, Zhenting Wang, Youwen Deng, C. Shuai\",\"doi\":\"10.1177/2280800019857064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Rapid corrosion rates are a major impediment to the use of magnesium alloys in bone tissue engineering despite their good mechanical properties and biodegradability. Zinc is a promising alloy element, and it is an effective grain refiner for magnesium. β-Ca3(PO4)2 (β-TCP) is widely used for bone regeneration because of its good biocompatibility, and it also has a similar chemical and crystal structure to human bone. Methods: In this research, the magnesium alloy was reinforced by adding 3%Zn (wt.%) and 5%β-TCP (wt.%) particles in order to improve the corrosion resistance and biocompatibility. Furthermore, the biomaterial was prepared through powder metallurgy technology using NH4HCO3 as space-holding particles to construct porous Mg–3%Zn/5%β-TCP scaffolds. Results: The results revealed that the magnesium-zinc phase and calcium phosphate phase were uniformly distributed in the α-magnesium matrix. Mechanical and corrosion tests indicated that the scaffolds had mechanical strengths similar to that of human bone, and their corrosion resistance decreased with an increase in the porosity. The scaffolds had cytotoxicity grades of 0–1 against MG63 cells, SaoS2 cells, and HK-2 cells, which suggested that they were appropriate for cellular applications. In addition, the scaffolds demonstrated excellent biocompatibility when tested in rabbits. Conclusions: These results indicate that porous Mg–3%Zn/5%β-TCP scaffolds are promising biodegradable implants for bone tissue engineering.\",\"PeriodicalId\":51074,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Biomechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2280800019857064\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2280800019857064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2280800019857064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

背景:尽管镁合金具有良好的机械性能和生物降解性,但快速腐蚀速率是阻碍其在骨组织工程中使用的主要障碍。锌是一种很有前途的合金元素,是镁的有效晶粒细化剂。β-Ca3(PO4)2(β-TCP)因其良好的生物相容性而被广泛用于骨再生,并且具有与人骨相似的化学结构和晶体结构。方法:在镁合金中加入3%的Zn(wt.%)和5%的β-TCP(wt.%%)颗粒进行增强,以提高镁合金的耐腐蚀性和生物相容性。此外,通过粉末冶金技术制备了该生物材料,使用NH4HCO3作为空间保持颗粒来构建多孔Mg–3%Zn/5%β-TCP支架。结果:镁-锌相和磷酸钙相在α-镁基体中分布均匀。力学和腐蚀测试表明,支架具有与人骨相似的机械强度,并且其耐腐蚀性随着孔隙率的增加而降低。支架对MG63细胞、SaoS2细胞和HK-2细胞的细胞毒性等级为0–1,这表明它们适合细胞应用。此外,在兔子身上测试时,支架显示出良好的生物相容性。结论:这些结果表明,多孔Mg-3%Zn/5%β-TCP支架是骨组织工程中有前途的可生物降解植入物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on corrosion behavior and biocompatibility of a porous Mg–3%Zn/5%β-Ca3(PO4)2 composite scaffold for bone tissue engineering
Background: Rapid corrosion rates are a major impediment to the use of magnesium alloys in bone tissue engineering despite their good mechanical properties and biodegradability. Zinc is a promising alloy element, and it is an effective grain refiner for magnesium. β-Ca3(PO4)2 (β-TCP) is widely used for bone regeneration because of its good biocompatibility, and it also has a similar chemical and crystal structure to human bone. Methods: In this research, the magnesium alloy was reinforced by adding 3%Zn (wt.%) and 5%β-TCP (wt.%) particles in order to improve the corrosion resistance and biocompatibility. Furthermore, the biomaterial was prepared through powder metallurgy technology using NH4HCO3 as space-holding particles to construct porous Mg–3%Zn/5%β-TCP scaffolds. Results: The results revealed that the magnesium-zinc phase and calcium phosphate phase were uniformly distributed in the α-magnesium matrix. Mechanical and corrosion tests indicated that the scaffolds had mechanical strengths similar to that of human bone, and their corrosion resistance decreased with an increase in the porosity. The scaffolds had cytotoxicity grades of 0–1 against MG63 cells, SaoS2 cells, and HK-2 cells, which suggested that they were appropriate for cellular applications. In addition, the scaffolds demonstrated excellent biocompatibility when tested in rabbits. Conclusions: These results indicate that porous Mg–3%Zn/5%β-TCP scaffolds are promising biodegradable implants for bone tissue engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomaterials & Biomechanics
Journal of Applied Biomaterials & Biomechanics 生物-材料科学:生物材料
自引率
0.00%
发文量
0
审稿时长
12 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信