附加结构单调包含的消失阻尼二阶分裂动力学

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-01-01 Epub Date: 2022-04-19 DOI:10.1007/s10884-022-10160-3
Radu Ioan Boţ, David Alexander Hulett
{"title":"附加结构单调包含的消失阻尼二阶分裂动力学","authors":"Radu Ioan Boţ, David Alexander Hulett","doi":"10.1007/s10884-022-10160-3","DOIUrl":null,"url":null,"abstract":"<p><p>In the framework of a real Hilbert space, we address the problem of finding the zeros of the sum of a maximally monotone operator <i>A</i> and a cocoercive operator <i>B</i>. We study the asymptotic behaviour of the trajectories generated by a second order equation with vanishing damping, attached to this problem, and governed by a time-dependent forward-backward-type operator. This is a splitting system, as it only requires forward evaluations of <i>B</i> and backward evaluations of <i>A</i>. A proper tuning of the system parameters ensures the weak convergence of the trajectories to the set of zeros of <math><mrow><mi>A</mi><mo>+</mo><mi>B</mi></mrow></math>, as well as fast convergence of the velocities towards zero. A particular case of our system allows to derive fast convergence rates for the problem of minimizing the sum of a proper, convex and lower semicontinuous function and a smooth and convex function with Lipschitz continuous gradient. We illustrate the theoretical outcomes by numerical experiments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901952/pdf/","citationCount":"0","resultStr":"{\"title\":\"Second Order Splitting Dynamics with Vanishing Damping for Additively Structured Monotone Inclusions.\",\"authors\":\"Radu Ioan Boţ, David Alexander Hulett\",\"doi\":\"10.1007/s10884-022-10160-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the framework of a real Hilbert space, we address the problem of finding the zeros of the sum of a maximally monotone operator <i>A</i> and a cocoercive operator <i>B</i>. We study the asymptotic behaviour of the trajectories generated by a second order equation with vanishing damping, attached to this problem, and governed by a time-dependent forward-backward-type operator. This is a splitting system, as it only requires forward evaluations of <i>B</i> and backward evaluations of <i>A</i>. A proper tuning of the system parameters ensures the weak convergence of the trajectories to the set of zeros of <math><mrow><mi>A</mi><mo>+</mo><mi>B</mi></mrow></math>, as well as fast convergence of the velocities towards zero. A particular case of our system allows to derive fast convergence rates for the problem of minimizing the sum of a proper, convex and lower semicontinuous function and a smooth and convex function with Lipschitz continuous gradient. We illustrate the theoretical outcomes by numerical experiments.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901952/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-022-10160-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/4/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-022-10160-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在实希尔伯特空间的框架内,我们解决了寻找最大单调算子 A 与胁迫算子 B 之和的零点的问题。我们研究了由二阶方程产生的轨迹的渐近行为,该方程具有消失的阻尼,与此问题相连,并受随时间变化的前向后向型算子的支配。适当调整系统参数可确保轨迹微弱收敛到 A+B 的零点集,以及速度快速收敛为零。通过我们系统的一个特殊案例,我们可以推导出一个问题的快速收敛率,即最小化一个适当的、凸的、低半连续函数与一个具有利普希兹连续梯度的平滑凸函数之和。我们通过数值实验来说明理论成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second Order Splitting Dynamics with Vanishing Damping for Additively Structured Monotone Inclusions.

In the framework of a real Hilbert space, we address the problem of finding the zeros of the sum of a maximally monotone operator A and a cocoercive operator B. We study the asymptotic behaviour of the trajectories generated by a second order equation with vanishing damping, attached to this problem, and governed by a time-dependent forward-backward-type operator. This is a splitting system, as it only requires forward evaluations of B and backward evaluations of A. A proper tuning of the system parameters ensures the weak convergence of the trajectories to the set of zeros of A+B, as well as fast convergence of the velocities towards zero. A particular case of our system allows to derive fast convergence rates for the problem of minimizing the sum of a proper, convex and lower semicontinuous function and a smooth and convex function with Lipschitz continuous gradient. We illustrate the theoretical outcomes by numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信