{"title":"在代谢工程大肠杆菌中构建合成丙烯酸酯途径生物转化葡萄糖和d-乳酸生产丙酸","authors":"Anitha Janet Roshni Yesudhas, Padmapriya Ganapathy Raman, Akila Thirumalai, Shuchi Saxena, R. Subramanian","doi":"10.1080/10242422.2021.2020760","DOIUrl":null,"url":null,"abstract":"Abstract Construction of an efficient synthetic acrylate pathway in recombinant hosts such as E. coli and lactic acid bacteria should lead to synthesis of an array of products such as propionic acid, β-alanine, α-amino butyric acid and other products. The major bottlenecks impeding the titre of propionic acid, from d-lactate via the acrylate pathway in Escherichia coli and Lactococcus lactis, mainly include regulatory hurdles, inefficiency of enzymes involved in production and inability to overexpress multiple enzymes in soluble functional form along with other factors. In this work, the three enzymes, propionyl-CoA transferase (Pct) and acryloyl-CoA reductase (Acr) from E. coli, and lactoyl-CoA dehydratase (Lcd) from Megasphaera elsdenii, that possess better kinetic parameters and reduced size, have been recruited based on the insights gained from kinetic modelling of the acrylate pathway. Secondly, a common strategy for functional expression of these pathway enzymes has been demonstrated to improve their specific activities. The expression levels of Pct, Acr and Lcd were enhanced by sorbitol-induced native folding, with exposure to heat and low expression temperature, resulting in 11-, 4- and 4-fold higher yield of soluble protein than in the control. The specific activities of Pct and Acr were 39- and 34-fold higher than Clostridium propionicum counterparts. Also, the enzyme activity of Lcd was equivalent to that in the native producer, C. propionicum. The recombinant strains exhibited 11% and 20% lesser growth rates than in the control with propionate titre of 240 mg/L and 320 mg/L when grown in glucose and d-lactate, respectively. The yields of propionic acid from glucose and lactic acid were 5% and 32%, respectively. Further improvement in yields should be achieved by expressing all the enzymes in sufficient amount and appropriate ratios, overcoming all the regulatory hurdles.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Production of propionic acid through biotransformation of glucose and d-lactic acid by construction of synthetic acrylate pathway in metabolically engineered E. coli\",\"authors\":\"Anitha Janet Roshni Yesudhas, Padmapriya Ganapathy Raman, Akila Thirumalai, Shuchi Saxena, R. Subramanian\",\"doi\":\"10.1080/10242422.2021.2020760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Construction of an efficient synthetic acrylate pathway in recombinant hosts such as E. coli and lactic acid bacteria should lead to synthesis of an array of products such as propionic acid, β-alanine, α-amino butyric acid and other products. The major bottlenecks impeding the titre of propionic acid, from d-lactate via the acrylate pathway in Escherichia coli and Lactococcus lactis, mainly include regulatory hurdles, inefficiency of enzymes involved in production and inability to overexpress multiple enzymes in soluble functional form along with other factors. In this work, the three enzymes, propionyl-CoA transferase (Pct) and acryloyl-CoA reductase (Acr) from E. coli, and lactoyl-CoA dehydratase (Lcd) from Megasphaera elsdenii, that possess better kinetic parameters and reduced size, have been recruited based on the insights gained from kinetic modelling of the acrylate pathway. Secondly, a common strategy for functional expression of these pathway enzymes has been demonstrated to improve their specific activities. The expression levels of Pct, Acr and Lcd were enhanced by sorbitol-induced native folding, with exposure to heat and low expression temperature, resulting in 11-, 4- and 4-fold higher yield of soluble protein than in the control. The specific activities of Pct and Acr were 39- and 34-fold higher than Clostridium propionicum counterparts. Also, the enzyme activity of Lcd was equivalent to that in the native producer, C. propionicum. The recombinant strains exhibited 11% and 20% lesser growth rates than in the control with propionate titre of 240 mg/L and 320 mg/L when grown in glucose and d-lactate, respectively. The yields of propionic acid from glucose and lactic acid were 5% and 32%, respectively. Further improvement in yields should be achieved by expressing all the enzymes in sufficient amount and appropriate ratios, overcoming all the regulatory hurdles.\",\"PeriodicalId\":8824,\"journal\":{\"name\":\"Biocatalysis and Biotransformation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocatalysis and Biotransformation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10242422.2021.2020760\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and Biotransformation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10242422.2021.2020760","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Production of propionic acid through biotransformation of glucose and d-lactic acid by construction of synthetic acrylate pathway in metabolically engineered E. coli
Abstract Construction of an efficient synthetic acrylate pathway in recombinant hosts such as E. coli and lactic acid bacteria should lead to synthesis of an array of products such as propionic acid, β-alanine, α-amino butyric acid and other products. The major bottlenecks impeding the titre of propionic acid, from d-lactate via the acrylate pathway in Escherichia coli and Lactococcus lactis, mainly include regulatory hurdles, inefficiency of enzymes involved in production and inability to overexpress multiple enzymes in soluble functional form along with other factors. In this work, the three enzymes, propionyl-CoA transferase (Pct) and acryloyl-CoA reductase (Acr) from E. coli, and lactoyl-CoA dehydratase (Lcd) from Megasphaera elsdenii, that possess better kinetic parameters and reduced size, have been recruited based on the insights gained from kinetic modelling of the acrylate pathway. Secondly, a common strategy for functional expression of these pathway enzymes has been demonstrated to improve their specific activities. The expression levels of Pct, Acr and Lcd were enhanced by sorbitol-induced native folding, with exposure to heat and low expression temperature, resulting in 11-, 4- and 4-fold higher yield of soluble protein than in the control. The specific activities of Pct and Acr were 39- and 34-fold higher than Clostridium propionicum counterparts. Also, the enzyme activity of Lcd was equivalent to that in the native producer, C. propionicum. The recombinant strains exhibited 11% and 20% lesser growth rates than in the control with propionate titre of 240 mg/L and 320 mg/L when grown in glucose and d-lactate, respectively. The yields of propionic acid from glucose and lactic acid were 5% and 32%, respectively. Further improvement in yields should be achieved by expressing all the enzymes in sufficient amount and appropriate ratios, overcoming all the regulatory hurdles.
期刊介绍:
Biocatalysis and Biotransformation publishes high quality research on the application of biological catalysts for the synthesis, interconversion or degradation of chemical species.
Papers are published in the areas of:
Mechanistic principles
Kinetics and thermodynamics of biocatalytic processes
Chemical or genetic modification of biocatalysts
Developments in biocatalyst''s immobilization
Activity and stability of biocatalysts in non-aqueous and multi-phasic environments, including the design of large scale biocatalytic processes
Biomimetic systems
Environmental applications of biocatalysis
Metabolic engineering
Types of articles published are; full-length original research articles, reviews, short communications on the application of biotransformations, and preliminary reports of novel catalytic activities.