{"title":"南极洲德龙宁毛德岛中部花岗岩和花岗片麻岩的洞穴状衰变","authors":"A. Engvik, S. Elvevold, P. Myhre","doi":"10.1086/718805","DOIUrl":null,"url":null,"abstract":"Tafoni are a type of cavernous weathering that is found in a variety of rock types and locations around the world. Tafoni have been documented in a number of climatic zones ranging from hot and cold deserts to moist coastal environments. Despite the widespread distribution of tafoni, the major processes controlling tafoni weathering are not well understood and are still a matter of discussion. This study addresses the frequent distribution of well-developed tafoni in the cold, arid environment of the inland mountain range of central Dronning Maud Land, Antarctica. The aim is to document and characterize the nature of tafoni present in Gjelsvikfjella (2°E) eastward to Filchnerfjella (8°E) and to discuss formation processes. The cavities occur in groups and are typically spherical to oval shaped. They range in diameter and depth from 1 dm up to 1.5 m. The cold, arid environment of this region favors mechanical weathering mechanisms such as freeze-thaw actions and wind abrasion. Furthermore, the structural, textural, and mineralogical properties of the parent rock can potentially have a strong control on weathering and cavity development. Observed tafoni are typically formed in massive granitoid intrusives and granitic gneisses and migmatites. Chemical dissolution of pyroxene to iddingsite and radiation from rare earth element–bearing accessory minerals cause microfracturing, which facilitates freeze-thaw actions and accordingly enhances the weathering.","PeriodicalId":54826,"journal":{"name":"Journal of Geology","volume":"130 1","pages":"63 - 76"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cavernous Decay of Granite and Granitic Gneiss, Central Dronning Maud Land, Antarctica\",\"authors\":\"A. Engvik, S. Elvevold, P. Myhre\",\"doi\":\"10.1086/718805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tafoni are a type of cavernous weathering that is found in a variety of rock types and locations around the world. Tafoni have been documented in a number of climatic zones ranging from hot and cold deserts to moist coastal environments. Despite the widespread distribution of tafoni, the major processes controlling tafoni weathering are not well understood and are still a matter of discussion. This study addresses the frequent distribution of well-developed tafoni in the cold, arid environment of the inland mountain range of central Dronning Maud Land, Antarctica. The aim is to document and characterize the nature of tafoni present in Gjelsvikfjella (2°E) eastward to Filchnerfjella (8°E) and to discuss formation processes. The cavities occur in groups and are typically spherical to oval shaped. They range in diameter and depth from 1 dm up to 1.5 m. The cold, arid environment of this region favors mechanical weathering mechanisms such as freeze-thaw actions and wind abrasion. Furthermore, the structural, textural, and mineralogical properties of the parent rock can potentially have a strong control on weathering and cavity development. Observed tafoni are typically formed in massive granitoid intrusives and granitic gneisses and migmatites. Chemical dissolution of pyroxene to iddingsite and radiation from rare earth element–bearing accessory minerals cause microfracturing, which facilitates freeze-thaw actions and accordingly enhances the weathering.\",\"PeriodicalId\":54826,\"journal\":{\"name\":\"Journal of Geology\",\"volume\":\"130 1\",\"pages\":\"63 - 76\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1086/718805\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1086/718805","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
Cavernous Decay of Granite and Granitic Gneiss, Central Dronning Maud Land, Antarctica
Tafoni are a type of cavernous weathering that is found in a variety of rock types and locations around the world. Tafoni have been documented in a number of climatic zones ranging from hot and cold deserts to moist coastal environments. Despite the widespread distribution of tafoni, the major processes controlling tafoni weathering are not well understood and are still a matter of discussion. This study addresses the frequent distribution of well-developed tafoni in the cold, arid environment of the inland mountain range of central Dronning Maud Land, Antarctica. The aim is to document and characterize the nature of tafoni present in Gjelsvikfjella (2°E) eastward to Filchnerfjella (8°E) and to discuss formation processes. The cavities occur in groups and are typically spherical to oval shaped. They range in diameter and depth from 1 dm up to 1.5 m. The cold, arid environment of this region favors mechanical weathering mechanisms such as freeze-thaw actions and wind abrasion. Furthermore, the structural, textural, and mineralogical properties of the parent rock can potentially have a strong control on weathering and cavity development. Observed tafoni are typically formed in massive granitoid intrusives and granitic gneisses and migmatites. Chemical dissolution of pyroxene to iddingsite and radiation from rare earth element–bearing accessory minerals cause microfracturing, which facilitates freeze-thaw actions and accordingly enhances the weathering.
期刊介绍:
One of the oldest journals in geology, The Journal of Geology has since 1893 promoted the systematic philosophical and fundamental study of geology.
The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences. Many of its articles have wide appeal for geologists, present research of topical relevance, and offer new geological insights through the application of innovative approaches and methods.