超参数搜索对人工神经网络在人体活动识别中的作用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
J. Suto
{"title":"超参数搜索对人工神经网络在人体活动识别中的作用","authors":"J. Suto","doi":"10.1515/comp-2020-0227","DOIUrl":null,"url":null,"abstract":"Abstract In the last decade, many researchers applied shallow and deep networks for human activity recognition (HAR). Currently, the trending research line in HAR is applying deep learning to extract features and classify activities from raw data. However, we observed that, authors of previous studies have not performed an efficient hyperparameter search on their artificial neural network (shallow or deep)-based classifier. Therefore, in this article, we demonstrate the effect of the random and Bayesian parameter search on a shallow neural network using five HAR databases. The result of this work shows that a shallow neural network with correct parameter optimization can achieve similar or even better recognition accuracy than the previous best deep classifier(s) on all databases. In addition, we draw conclusions about the advantages and disadvantages of the two hyperparameter search techniques according to the results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/comp-2020-0227","citationCount":"4","resultStr":"{\"title\":\"The effect of hyperparameter search on artificial neural network in human activity recognition\",\"authors\":\"J. Suto\",\"doi\":\"10.1515/comp-2020-0227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the last decade, many researchers applied shallow and deep networks for human activity recognition (HAR). Currently, the trending research line in HAR is applying deep learning to extract features and classify activities from raw data. However, we observed that, authors of previous studies have not performed an efficient hyperparameter search on their artificial neural network (shallow or deep)-based classifier. Therefore, in this article, we demonstrate the effect of the random and Bayesian parameter search on a shallow neural network using five HAR databases. The result of this work shows that a shallow neural network with correct parameter optimization can achieve similar or even better recognition accuracy than the previous best deep classifier(s) on all databases. In addition, we draw conclusions about the advantages and disadvantages of the two hyperparameter search techniques according to the results.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/comp-2020-0227\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/comp-2020-0227\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2020-0227","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

在过去的十年中,许多研究者将浅网络和深度网络应用于人类活动识别(HAR)。目前,HAR的趋势研究方向是应用深度学习从原始数据中提取特征并对活动进行分类。然而,我们观察到,先前研究的作者没有在他们的人工神经网络(浅或深)分类器上执行有效的超参数搜索。因此,在本文中,我们使用五个HAR数据库演示了随机和贝叶斯参数搜索对浅神经网络的影响。这项工作的结果表明,具有正确参数优化的浅神经网络可以在所有数据库上获得与以前最好的深度分类器相似甚至更好的识别精度。此外,根据结果对两种超参数搜索技术的优缺点进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of hyperparameter search on artificial neural network in human activity recognition
Abstract In the last decade, many researchers applied shallow and deep networks for human activity recognition (HAR). Currently, the trending research line in HAR is applying deep learning to extract features and classify activities from raw data. However, we observed that, authors of previous studies have not performed an efficient hyperparameter search on their artificial neural network (shallow or deep)-based classifier. Therefore, in this article, we demonstrate the effect of the random and Bayesian parameter search on a shallow neural network using five HAR databases. The result of this work shows that a shallow neural network with correct parameter optimization can achieve similar or even better recognition accuracy than the previous best deep classifier(s) on all databases. In addition, we draw conclusions about the advantages and disadvantages of the two hyperparameter search techniques according to the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信