Danish Ali, Zhiqing Yang, Abid Hussain, Mohd Ibrahim Sheikh
{"title":"H(n)移动是虚拟和焊接链路的解结操作","authors":"Danish Ali, Zhiqing Yang, Abid Hussain, Mohd Ibrahim Sheikh","doi":"10.1142/s021821652350061x","DOIUrl":null,"url":null,"abstract":"An unknotting operation is a local move such that any knot diagram can be transformed into a diagram of the trivial knot by a finite sequence of these operations plus some Reidemeister moves. It is known that the H(n)-move is an unknotting operation for classical knots and links. In this paper, we extend the classical unknotting operation H(n)-move to virtual knots and links. Virtualization and forbidden move are well-known unknotting operations for virtual knots and links. We also show that virtualization and forbidden move can be realized by a finite sequence of generalized Reidemeister moves and H(n)-moves.","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The H(n)-move is an unknotting operation for virtual and welded links\",\"authors\":\"Danish Ali, Zhiqing Yang, Abid Hussain, Mohd Ibrahim Sheikh\",\"doi\":\"10.1142/s021821652350061x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An unknotting operation is a local move such that any knot diagram can be transformed into a diagram of the trivial knot by a finite sequence of these operations plus some Reidemeister moves. It is known that the H(n)-move is an unknotting operation for classical knots and links. In this paper, we extend the classical unknotting operation H(n)-move to virtual knots and links. Virtualization and forbidden move are well-known unknotting operations for virtual knots and links. We also show that virtualization and forbidden move can be realized by a finite sequence of generalized Reidemeister moves and H(n)-moves.\",\"PeriodicalId\":54790,\"journal\":{\"name\":\"Journal of Knot Theory and Its Ramifications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Knot Theory and Its Ramifications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021821652350061x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Knot Theory and Its Ramifications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021821652350061x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The H(n)-move is an unknotting operation for virtual and welded links
An unknotting operation is a local move such that any knot diagram can be transformed into a diagram of the trivial knot by a finite sequence of these operations plus some Reidemeister moves. It is known that the H(n)-move is an unknotting operation for classical knots and links. In this paper, we extend the classical unknotting operation H(n)-move to virtual knots and links. Virtualization and forbidden move are well-known unknotting operations for virtual knots and links. We also show that virtualization and forbidden move can be realized by a finite sequence of generalized Reidemeister moves and H(n)-moves.
期刊介绍:
This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories).
Papers that will be published include:
-new research in the theory of knots and links, and their applications;
-new research in related fields;
-tutorial and review papers.
With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.