Marijana Boras, Ivana Herceg-Bulić, Matej Žgela, Irena Nimac
{"title":"杜布罗夫尼克市的温度特性和热负荷","authors":"Marijana Boras, Ivana Herceg-Bulić, Matej Žgela, Irena Nimac","doi":"10.15233/gfz.2022.39.16","DOIUrl":null,"url":null,"abstract":"In this study, temperature characteristics and heat load in the city of Dubrovnik are investigated by using temperature data observed at the local meteorological station in Dubrovnik for the period 1961-2019, satellite data collected by LANDSAT5 satellite for the period 2001-2010, and climate indices data obtained from simulations of an urban climate model (MUKLIMO_3) for the period 2001-2010. Trends in daily mean, maximum, minimum, and seasonal temperatures were analysed by using Sen's slope and the Mann-Kendall test. Results reveal rising trends for all of the studied temperature-related elements. However, it is demonstrated that temperature increase is greatest for the summer season with the highest rise for daily maximum temperatures. The same approach was applied to examine trends of climate indices (summer days and tropical nights), which indicates an increase in the number of both summer days and tropical nights. Results of satellite data of average summer land surface temperatures for the period 2001-2010 indicate that urbanised surfaces and bare rock areas heat up more than natural surfaces with vegetation. Climate indices (summer and hot days, warm evenings, and tropical nights) simulated by the urban climate model MUKLIMO_3 also reveal that, on average, in the city of Dubrovnik urbanised surfaces heat up more than natural surfaces with vegetation and that nocturnal heat load is reduced in lower-density built-up areas.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature characteristics and heat load in the City of Dubrovnik\",\"authors\":\"Marijana Boras, Ivana Herceg-Bulić, Matej Žgela, Irena Nimac\",\"doi\":\"10.15233/gfz.2022.39.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, temperature characteristics and heat load in the city of Dubrovnik are investigated by using temperature data observed at the local meteorological station in Dubrovnik for the period 1961-2019, satellite data collected by LANDSAT5 satellite for the period 2001-2010, and climate indices data obtained from simulations of an urban climate model (MUKLIMO_3) for the period 2001-2010. Trends in daily mean, maximum, minimum, and seasonal temperatures were analysed by using Sen's slope and the Mann-Kendall test. Results reveal rising trends for all of the studied temperature-related elements. However, it is demonstrated that temperature increase is greatest for the summer season with the highest rise for daily maximum temperatures. The same approach was applied to examine trends of climate indices (summer days and tropical nights), which indicates an increase in the number of both summer days and tropical nights. Results of satellite data of average summer land surface temperatures for the period 2001-2010 indicate that urbanised surfaces and bare rock areas heat up more than natural surfaces with vegetation. Climate indices (summer and hot days, warm evenings, and tropical nights) simulated by the urban climate model MUKLIMO_3 also reveal that, on average, in the city of Dubrovnik urbanised surfaces heat up more than natural surfaces with vegetation and that nocturnal heat load is reduced in lower-density built-up areas.\",\"PeriodicalId\":50419,\"journal\":{\"name\":\"Geofizika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofizika\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15233/gfz.2022.39.16\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizika","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15233/gfz.2022.39.16","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Temperature characteristics and heat load in the City of Dubrovnik
In this study, temperature characteristics and heat load in the city of Dubrovnik are investigated by using temperature data observed at the local meteorological station in Dubrovnik for the period 1961-2019, satellite data collected by LANDSAT5 satellite for the period 2001-2010, and climate indices data obtained from simulations of an urban climate model (MUKLIMO_3) for the period 2001-2010. Trends in daily mean, maximum, minimum, and seasonal temperatures were analysed by using Sen's slope and the Mann-Kendall test. Results reveal rising trends for all of the studied temperature-related elements. However, it is demonstrated that temperature increase is greatest for the summer season with the highest rise for daily maximum temperatures. The same approach was applied to examine trends of climate indices (summer days and tropical nights), which indicates an increase in the number of both summer days and tropical nights. Results of satellite data of average summer land surface temperatures for the period 2001-2010 indicate that urbanised surfaces and bare rock areas heat up more than natural surfaces with vegetation. Climate indices (summer and hot days, warm evenings, and tropical nights) simulated by the urban climate model MUKLIMO_3 also reveal that, on average, in the city of Dubrovnik urbanised surfaces heat up more than natural surfaces with vegetation and that nocturnal heat load is reduced in lower-density built-up areas.
期刊介绍:
The Geofizika journal succeeds the Papers series (Radovi), which has been published since 1923 at the Geophysical Institute in Zagreb (current the Department of Geophysics, Faculty of Science, University of Zagreb).
Geofizika publishes contributions dealing with physics of the atmosphere, the sea and the Earth''s interior.