Man Chen, Gong Cheng, Jinshan Xu, Guangyue Zhang, Chengqian Jin
{"title":"基于DEEPLABV3的机械化大豆粉碎率和杂质率在线检测系统+","authors":"Man Chen, Gong Cheng, Jinshan Xu, Guangyue Zhang, Chengqian Jin","doi":"10.35633/inmateh-70-48","DOIUrl":null,"url":null,"abstract":"In this study, an online detection system of soybean crushed rate and impurity rate based on DeepLabV3+model was constructed. Three feature extraction networks, namely the MobileNetV2, Xception-65, and ResNet-50 models, were adopted to obtain the best DeepLabV3+model through test analysis. Two well-established semantic segmentation networks, the improved U-Net and PSPNet, are used for mechanically harvested soybean image recognition and segmentation, and their performances are compared with the DeepLabV3+ model’s performance. The results show that, of all the models, the improved U-Net has the best segmentation performance, achieving a mean intersection over union (FMIOU) value of 0.8326. The segmentation performance of the DeepLabV3+ model using the MobileNetV2 is similar to that of the U-Net, achieving FMIOU of 0.8180. The DeepLabV3+ model using the MobileNetV2 has a fast segmentation speed of 168.6 ms per image. Taking manual detection results as a benchmark, the maximum absolute and relative errors of the impurity rate of the detection system based on the DeepLabV3+ model with the MobileNetV2 of mechanized soybean harvesting operation are 0.06% and 8.11%, respectively. The maximum absolute and relative errors of the crushed rate of the same system are 0.34% and 9.53%, respectively.","PeriodicalId":44197,"journal":{"name":"INMATEH-Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ONLINE DETECTION SYSTEM FOR CRUSHED RATE AND IMPURITY RATE OF MECHANIZED SOYBEAN BASED ON DEEPLABV3+\",\"authors\":\"Man Chen, Gong Cheng, Jinshan Xu, Guangyue Zhang, Chengqian Jin\",\"doi\":\"10.35633/inmateh-70-48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an online detection system of soybean crushed rate and impurity rate based on DeepLabV3+model was constructed. Three feature extraction networks, namely the MobileNetV2, Xception-65, and ResNet-50 models, were adopted to obtain the best DeepLabV3+model through test analysis. Two well-established semantic segmentation networks, the improved U-Net and PSPNet, are used for mechanically harvested soybean image recognition and segmentation, and their performances are compared with the DeepLabV3+ model’s performance. The results show that, of all the models, the improved U-Net has the best segmentation performance, achieving a mean intersection over union (FMIOU) value of 0.8326. The segmentation performance of the DeepLabV3+ model using the MobileNetV2 is similar to that of the U-Net, achieving FMIOU of 0.8180. The DeepLabV3+ model using the MobileNetV2 has a fast segmentation speed of 168.6 ms per image. Taking manual detection results as a benchmark, the maximum absolute and relative errors of the impurity rate of the detection system based on the DeepLabV3+ model with the MobileNetV2 of mechanized soybean harvesting operation are 0.06% and 8.11%, respectively. The maximum absolute and relative errors of the crushed rate of the same system are 0.34% and 9.53%, respectively.\",\"PeriodicalId\":44197,\"journal\":{\"name\":\"INMATEH-Agricultural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INMATEH-Agricultural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35633/inmateh-70-48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INMATEH-Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35633/inmateh-70-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
ONLINE DETECTION SYSTEM FOR CRUSHED RATE AND IMPURITY RATE OF MECHANIZED SOYBEAN BASED ON DEEPLABV3+
In this study, an online detection system of soybean crushed rate and impurity rate based on DeepLabV3+model was constructed. Three feature extraction networks, namely the MobileNetV2, Xception-65, and ResNet-50 models, were adopted to obtain the best DeepLabV3+model through test analysis. Two well-established semantic segmentation networks, the improved U-Net and PSPNet, are used for mechanically harvested soybean image recognition and segmentation, and their performances are compared with the DeepLabV3+ model’s performance. The results show that, of all the models, the improved U-Net has the best segmentation performance, achieving a mean intersection over union (FMIOU) value of 0.8326. The segmentation performance of the DeepLabV3+ model using the MobileNetV2 is similar to that of the U-Net, achieving FMIOU of 0.8180. The DeepLabV3+ model using the MobileNetV2 has a fast segmentation speed of 168.6 ms per image. Taking manual detection results as a benchmark, the maximum absolute and relative errors of the impurity rate of the detection system based on the DeepLabV3+ model with the MobileNetV2 of mechanized soybean harvesting operation are 0.06% and 8.11%, respectively. The maximum absolute and relative errors of the crushed rate of the same system are 0.34% and 9.53%, respectively.