亏格7、8和9曲线模空间的Chow环

IF 0.9 1区 数学 Q2 MATHEMATICS
Samir Canning, H. Larson
{"title":"亏格7、8和9曲线模空间的Chow环","authors":"Samir Canning, H. Larson","doi":"10.1090/jag/818","DOIUrl":null,"url":null,"abstract":"<p>The rational Chow ring of the moduli space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M Subscript g\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mi>g</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {M}_g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of curves of genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\n <mml:semantics>\n <mml:mi>g</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is known for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g less-than-or-equal-to 6\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>6</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">g \\leq 6</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Here, we determine the rational Chow rings of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M 7 comma script upper M 8\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mn>7</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mn>8</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {M}_7, \\mathcal {M}_8</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M 9\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mn>9</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {M}_9</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> by showing they are tautological. The key ingredient is intersection theory on Hurwitz spaces of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"4\">\n <mml:semantics>\n <mml:mn>4</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5\">\n <mml:semantics>\n <mml:mn>5</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">5</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> covers of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> via their associated vector bundles. The main focus of this paper is a detailed geometric analysis of special tetragonal and pentagonal covers whose associated vector bundles on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are highly unbalanced, expanding upon previous work of the authors in the more balanced case. In genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"9\">\n <mml:semantics>\n <mml:mn>9</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">9</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we use work of Mukai to present the locus of hexagonal curves as a global quotient stack, and, using equivariant intersection theory, we show its Chow ring is generated by restrictions of tautological classes.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The Chow rings of the moduli spaces of curves of genus 7, 8, and 9\",\"authors\":\"Samir Canning, H. Larson\",\"doi\":\"10.1090/jag/818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rational Chow ring of the moduli space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper M Subscript g\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mi>g</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {M}_g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of curves of genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\">\\n <mml:semantics>\\n <mml:mi>g</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is known for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g less-than-or-equal-to 6\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mn>6</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g \\\\leq 6</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Here, we determine the rational Chow rings of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper M 7 comma script upper M 8\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mn>7</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mn>8</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {M}_7, \\\\mathcal {M}_8</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper M 9\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mn>9</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {M}_9</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> by showing they are tautological. The key ingredient is intersection theory on Hurwitz spaces of degree <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"4\\\">\\n <mml:semantics>\\n <mml:mn>4</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"5\\\">\\n <mml:semantics>\\n <mml:mn>5</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">5</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> covers of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P Superscript 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}^1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> via their associated vector bundles. The main focus of this paper is a detailed geometric analysis of special tetragonal and pentagonal covers whose associated vector bundles on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P Superscript 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}^1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are highly unbalanced, expanding upon previous work of the authors in the more balanced case. In genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"9\\\">\\n <mml:semantics>\\n <mml:mn>9</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">9</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, we use work of Mukai to present the locus of hexagonal curves as a global quotient stack, and, using equivariant intersection theory, we show its Chow ring is generated by restrictions of tautological classes.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/818\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/818","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

模空间Mg\mathcal的有理Chow环{M}_g对于g≤6 g\leq 6,已知g的亏格曲线。这里,我们确定了M7,M8\mathcal的有理Chow环{M}_7,\数学{M}_8,和M 9\数学{M}_9通过表明它们是重复的。主要内容是P1的4 4次Hurwitz空间和5 5次Hurwitz空间覆盖的交集理论,通过它们的相关向量丛。本文的主要焦点是对特殊的四方和五边形覆盖的详细几何分析,这些覆盖在P1\mathbb{P}^1上的相关向量丛是高度不平衡的,在更平衡的情况下扩展了作者以前的工作。在亏格9 9中,我们利用Mukai的工作将六角曲线的轨迹表示为全局商堆栈,并利用等变交理论证明了它的Chow环是由重言类的限制产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Chow rings of the moduli spaces of curves of genus 7, 8, and 9

The rational Chow ring of the moduli space M g \mathcal {M}_g of curves of genus g g is known for g 6 g \leq 6 . Here, we determine the rational Chow rings of M 7 , M 8 \mathcal {M}_7, \mathcal {M}_8 , and M 9 \mathcal {M}_9 by showing they are tautological. The key ingredient is intersection theory on Hurwitz spaces of degree 4 4 and 5 5 covers of P 1 \mathbb {P}^1 via their associated vector bundles. The main focus of this paper is a detailed geometric analysis of special tetragonal and pentagonal covers whose associated vector bundles on P 1 \mathbb {P}^1 are highly unbalanced, expanding upon previous work of the authors in the more balanced case. In genus 9 9 , we use work of Mukai to present the locus of hexagonal curves as a global quotient stack, and, using equivariant intersection theory, we show its Chow ring is generated by restrictions of tautological classes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信