{"title":"亏格7、8和9曲线模空间的Chow环","authors":"Samir Canning, H. Larson","doi":"10.1090/jag/818","DOIUrl":null,"url":null,"abstract":"<p>The rational Chow ring of the moduli space <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M Subscript g\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mi>g</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {M}_g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of curves of genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\n <mml:semantics>\n <mml:mi>g</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is known for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g less-than-or-equal-to 6\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>6</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">g \\leq 6</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Here, we determine the rational Chow rings of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M 7 comma script upper M 8\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mn>7</mml:mn>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mn>8</mml:mn>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {M}_7, \\mathcal {M}_8</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper M 9\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">M</mml:mi>\n </mml:mrow>\n <mml:mn>9</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {M}_9</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> by showing they are tautological. The key ingredient is intersection theory on Hurwitz spaces of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"4\">\n <mml:semantics>\n <mml:mn>4</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5\">\n <mml:semantics>\n <mml:mn>5</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">5</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> covers of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> via their associated vector bundles. The main focus of this paper is a detailed geometric analysis of special tetragonal and pentagonal covers whose associated vector bundles on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper P Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">P</mml:mi>\n </mml:mrow>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {P}^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are highly unbalanced, expanding upon previous work of the authors in the more balanced case. In genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"9\">\n <mml:semantics>\n <mml:mn>9</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">9</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we use work of Mukai to present the locus of hexagonal curves as a global quotient stack, and, using equivariant intersection theory, we show its Chow ring is generated by restrictions of tautological classes.</p>","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The Chow rings of the moduli spaces of curves of genus 7, 8, and 9\",\"authors\":\"Samir Canning, H. Larson\",\"doi\":\"10.1090/jag/818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rational Chow ring of the moduli space <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper M Subscript g\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mi>g</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {M}_g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> of curves of genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\">\\n <mml:semantics>\\n <mml:mi>g</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is known for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g less-than-or-equal-to 6\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:mo>≤<!-- ≤ --></mml:mo>\\n <mml:mn>6</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g \\\\leq 6</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Here, we determine the rational Chow rings of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper M 7 comma script upper M 8\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mn>7</mml:mn>\\n </mml:msub>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mn>8</mml:mn>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {M}_7, \\\\mathcal {M}_8</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper M 9\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">M</mml:mi>\\n </mml:mrow>\\n <mml:mn>9</mml:mn>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {M}_9</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> by showing they are tautological. The key ingredient is intersection theory on Hurwitz spaces of degree <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"4\\\">\\n <mml:semantics>\\n <mml:mn>4</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">4</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"5\\\">\\n <mml:semantics>\\n <mml:mn>5</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">5</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> covers of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P Superscript 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}^1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> via their associated vector bundles. The main focus of this paper is a detailed geometric analysis of special tetragonal and pentagonal covers whose associated vector bundles on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper P Superscript 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {P}^1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are highly unbalanced, expanding upon previous work of the authors in the more balanced case. In genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"9\\\">\\n <mml:semantics>\\n <mml:mn>9</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">9</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, we use work of Mukai to present the locus of hexagonal curves as a global quotient stack, and, using equivariant intersection theory, we show its Chow ring is generated by restrictions of tautological classes.</p>\",\"PeriodicalId\":54887,\"journal\":{\"name\":\"Journal of Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jag/818\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/818","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Chow rings of the moduli spaces of curves of genus 7, 8, and 9
The rational Chow ring of the moduli space Mg\mathcal {M}_g of curves of genus gg is known for g≤6g \leq 6. Here, we determine the rational Chow rings of M7,M8\mathcal {M}_7, \mathcal {M}_8, and M9\mathcal {M}_9 by showing they are tautological. The key ingredient is intersection theory on Hurwitz spaces of degree 44 and 55 covers of P1\mathbb {P}^1 via their associated vector bundles. The main focus of this paper is a detailed geometric analysis of special tetragonal and pentagonal covers whose associated vector bundles on P1\mathbb {P}^1 are highly unbalanced, expanding upon previous work of the authors in the more balanced case. In genus 99, we use work of Mukai to present the locus of hexagonal curves as a global quotient stack, and, using equivariant intersection theory, we show its Chow ring is generated by restrictions of tautological classes.
期刊介绍:
The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology.
This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.