Nairah Noor , Faiza Jhan , Adil Gani , Irfan Ahmad Raina , Mohammad Ashraf Shah
{"title":"山奈酚控释用抗淀粉纳米颗粒和金合欢胶构建的水凝胶的营养和毒理学评价","authors":"Nairah Noor , Faiza Jhan , Adil Gani , Irfan Ahmad Raina , Mohammad Ashraf Shah","doi":"10.1016/j.foostr.2022.100307","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Resistant starch<span> nanoparticles (RSN) were obtained using ultrasonication. RSN displayed a hydrodynamic diameter of 345.12 ± 0.01 nm and </span></span>zeta potential of 16.78 ± 0.04 mV. A bio composite hydrogel (RSNG) was formed by incorporating RSN of varying concentration (0.2%, 0.4% and 0.8%) in gum acacia (GA) to form resistant starch nanoparticle - gum acacia hydrogel, RSNG (0.2), RSNG (0.4) and RSNG (0.8), respectively. Kaempferol was nano encapsulated in RSNG (0.2%, 0.4% and 0.8%) for its controlled release. RSNG (0.4) displayed highest encapsulation efficiency of 61.23 ± 0.56% and in vitro release of kaempferol followed Higuchi model. Toxicity evaluation of RSN and RSNG revealed no effect on calf thymus DNA and human embryonic kidney (HEK-293 T) cells. The nutraceutical potential of RSNG showed retention of anti-oxidant, anti-diabetic, anti-hypertensive, anti-lipidemic and anti-microbial properties in simulated gastro-intestinal conditions (SGID). RSNG can efficiently encapsulate </span>flavonoids<span> and retain bioactivity in human digestive conditions that can be applied in food and pharmaceutical areas.</span></p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"35 ","pages":"Article 100307"},"PeriodicalIF":5.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nutraceutical and toxicological evaluation of hydrogels architected using resistant starch nanoparticles and gum acacia for controlled release of kaempferol\",\"authors\":\"Nairah Noor , Faiza Jhan , Adil Gani , Irfan Ahmad Raina , Mohammad Ashraf Shah\",\"doi\":\"10.1016/j.foostr.2022.100307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Resistant starch<span> nanoparticles (RSN) were obtained using ultrasonication. RSN displayed a hydrodynamic diameter of 345.12 ± 0.01 nm and </span></span>zeta potential of 16.78 ± 0.04 mV. A bio composite hydrogel (RSNG) was formed by incorporating RSN of varying concentration (0.2%, 0.4% and 0.8%) in gum acacia (GA) to form resistant starch nanoparticle - gum acacia hydrogel, RSNG (0.2), RSNG (0.4) and RSNG (0.8), respectively. Kaempferol was nano encapsulated in RSNG (0.2%, 0.4% and 0.8%) for its controlled release. RSNG (0.4) displayed highest encapsulation efficiency of 61.23 ± 0.56% and in vitro release of kaempferol followed Higuchi model. Toxicity evaluation of RSN and RSNG revealed no effect on calf thymus DNA and human embryonic kidney (HEK-293 T) cells. The nutraceutical potential of RSNG showed retention of anti-oxidant, anti-diabetic, anti-hypertensive, anti-lipidemic and anti-microbial properties in simulated gastro-intestinal conditions (SGID). RSNG can efficiently encapsulate </span>flavonoids<span> and retain bioactivity in human digestive conditions that can be applied in food and pharmaceutical areas.</span></p></div>\",\"PeriodicalId\":48640,\"journal\":{\"name\":\"Food Structure-Netherlands\",\"volume\":\"35 \",\"pages\":\"Article 100307\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Structure-Netherlands\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213329122000569\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329122000569","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Nutraceutical and toxicological evaluation of hydrogels architected using resistant starch nanoparticles and gum acacia for controlled release of kaempferol
Resistant starch nanoparticles (RSN) were obtained using ultrasonication. RSN displayed a hydrodynamic diameter of 345.12 ± 0.01 nm and zeta potential of 16.78 ± 0.04 mV. A bio composite hydrogel (RSNG) was formed by incorporating RSN of varying concentration (0.2%, 0.4% and 0.8%) in gum acacia (GA) to form resistant starch nanoparticle - gum acacia hydrogel, RSNG (0.2), RSNG (0.4) and RSNG (0.8), respectively. Kaempferol was nano encapsulated in RSNG (0.2%, 0.4% and 0.8%) for its controlled release. RSNG (0.4) displayed highest encapsulation efficiency of 61.23 ± 0.56% and in vitro release of kaempferol followed Higuchi model. Toxicity evaluation of RSN and RSNG revealed no effect on calf thymus DNA and human embryonic kidney (HEK-293 T) cells. The nutraceutical potential of RSNG showed retention of anti-oxidant, anti-diabetic, anti-hypertensive, anti-lipidemic and anti-microbial properties in simulated gastro-intestinal conditions (SGID). RSNG can efficiently encapsulate flavonoids and retain bioactivity in human digestive conditions that can be applied in food and pharmaceutical areas.
期刊介绍:
Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.