{"title":"大肠杆菌D8介导的Ag/SiO2纳米复合材料及其抗菌潜力","authors":"M. El-Zahed, M. Abou-Dobara, A. El‐Sayed, Z. Baka","doi":"10.36547/nbc.1023","DOIUrl":null,"url":null,"abstract":"Silica (SiO2) has a fundamental role in the recuperation of plants in response to environmental stresses, besides the induction of resistance against plant diseases. Silver nanoparticles (AgNPs) have a superior antimicrobial activity. The combination between SiO2 and AgNPs is a promising approach due to their antimicrobial activity, biological activity, low toxicity, and high stability of the produced nanocomposite. The current study postulated a green method for silver/silica nanocomposite (Ag/SiO2NC) synthesis at room temperature using the crude metabolites of Escherichia coli D8 (MF062579) strain in the presence of sunlight. UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) analyses have characterized the biosynthesized nanocomposite. TEM study of Ag/SiO2NC showed an average particle size of ~32 – 48 nm whereas AgNPs showed a mean size of 18 – 24 nm. The negative charged Ag/SiO2NC (-31.0 mV) showed potent antimicrobial activity against Bacillus cereus ATCC6633, Klebsiella pneumoniae ATCC33495, Staphylococcus aureus (ATCC25923), E. coli (ATCC25922), Candida albicans (ATCC10231), and Botrytis cinerea (Pers: Fr.). The minimum inhibitory concentration (MIC) test showed a dose-dependent manner of Ag/SiO2NC antimicrobial action. MIC values of Ag/SiO2NC against the tested pathogens exhibited 125 and 6.25 μg.mL-1 as antibacterial and antifungal agents, respectively. TEM micrographs showed changes in the pathogens treated with Ag/SiO2NC including wrinkling, damage, and rupture of the bacterial cell membrane. In addition, the formation of a mucilage matrix connecting the hyphal cells, the appearance of big vacuoles and lipid droplets with severe leakage of cytoplasmic contents of the treated B. cinerea were also recorded.","PeriodicalId":19210,"journal":{"name":"Nova Biotechnologica et Chimica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ag/SiO2 nanocomposite mediated by Escherichia coli D8 and their antimicrobial potential\",\"authors\":\"M. El-Zahed, M. Abou-Dobara, A. El‐Sayed, Z. Baka\",\"doi\":\"10.36547/nbc.1023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silica (SiO2) has a fundamental role in the recuperation of plants in response to environmental stresses, besides the induction of resistance against plant diseases. Silver nanoparticles (AgNPs) have a superior antimicrobial activity. The combination between SiO2 and AgNPs is a promising approach due to their antimicrobial activity, biological activity, low toxicity, and high stability of the produced nanocomposite. The current study postulated a green method for silver/silica nanocomposite (Ag/SiO2NC) synthesis at room temperature using the crude metabolites of Escherichia coli D8 (MF062579) strain in the presence of sunlight. UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) analyses have characterized the biosynthesized nanocomposite. TEM study of Ag/SiO2NC showed an average particle size of ~32 – 48 nm whereas AgNPs showed a mean size of 18 – 24 nm. The negative charged Ag/SiO2NC (-31.0 mV) showed potent antimicrobial activity against Bacillus cereus ATCC6633, Klebsiella pneumoniae ATCC33495, Staphylococcus aureus (ATCC25923), E. coli (ATCC25922), Candida albicans (ATCC10231), and Botrytis cinerea (Pers: Fr.). The minimum inhibitory concentration (MIC) test showed a dose-dependent manner of Ag/SiO2NC antimicrobial action. MIC values of Ag/SiO2NC against the tested pathogens exhibited 125 and 6.25 μg.mL-1 as antibacterial and antifungal agents, respectively. TEM micrographs showed changes in the pathogens treated with Ag/SiO2NC including wrinkling, damage, and rupture of the bacterial cell membrane. In addition, the formation of a mucilage matrix connecting the hyphal cells, the appearance of big vacuoles and lipid droplets with severe leakage of cytoplasmic contents of the treated B. cinerea were also recorded.\",\"PeriodicalId\":19210,\"journal\":{\"name\":\"Nova Biotechnologica et Chimica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nova Biotechnologica et Chimica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36547/nbc.1023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nova Biotechnologica et Chimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/nbc.1023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Ag/SiO2 nanocomposite mediated by Escherichia coli D8 and their antimicrobial potential
Silica (SiO2) has a fundamental role in the recuperation of plants in response to environmental stresses, besides the induction of resistance against plant diseases. Silver nanoparticles (AgNPs) have a superior antimicrobial activity. The combination between SiO2 and AgNPs is a promising approach due to their antimicrobial activity, biological activity, low toxicity, and high stability of the produced nanocomposite. The current study postulated a green method for silver/silica nanocomposite (Ag/SiO2NC) synthesis at room temperature using the crude metabolites of Escherichia coli D8 (MF062579) strain in the presence of sunlight. UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) analyses have characterized the biosynthesized nanocomposite. TEM study of Ag/SiO2NC showed an average particle size of ~32 – 48 nm whereas AgNPs showed a mean size of 18 – 24 nm. The negative charged Ag/SiO2NC (-31.0 mV) showed potent antimicrobial activity against Bacillus cereus ATCC6633, Klebsiella pneumoniae ATCC33495, Staphylococcus aureus (ATCC25923), E. coli (ATCC25922), Candida albicans (ATCC10231), and Botrytis cinerea (Pers: Fr.). The minimum inhibitory concentration (MIC) test showed a dose-dependent manner of Ag/SiO2NC antimicrobial action. MIC values of Ag/SiO2NC against the tested pathogens exhibited 125 and 6.25 μg.mL-1 as antibacterial and antifungal agents, respectively. TEM micrographs showed changes in the pathogens treated with Ag/SiO2NC including wrinkling, damage, and rupture of the bacterial cell membrane. In addition, the formation of a mucilage matrix connecting the hyphal cells, the appearance of big vacuoles and lipid droplets with severe leakage of cytoplasmic contents of the treated B. cinerea were also recorded.