基于主题模型的AIS轨迹大数据导航模式提取

IF 1.9 4区 工程技术 Q2 ENGINEERING, MARINE
Iwao Fujino, C. Claramunt
{"title":"基于主题模型的AIS轨迹大数据导航模式提取","authors":"Iwao Fujino, C. Claramunt","doi":"10.1017/s0373463323000206","DOIUrl":null,"url":null,"abstract":"\n This paper introduces a novel approach for extracting vessel navigation patterns from very large automatic identification system (AIS) trajectory big data. AIS trajectory data records are first converted to a series of code documents using vector quantisation, such as k-means and PQk-means algorithms, whose performance is evaluated in terms of precision and computational time. Therefore, a topic model is applied to these code documents from which vessels’ navigation patterns are extracted and identified. The potential of the proposed approach is illustrated by several experiments conducted with a practical AIS dataset in a region of North West France. These experimental results show that the proposed approach is highly appropriate for mining AIS trajectory big data and outperforms common DBSCAN algorithms and Gaussian mixture models.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigation pattern extraction from AIS trajectory big data via topic model\",\"authors\":\"Iwao Fujino, C. Claramunt\",\"doi\":\"10.1017/s0373463323000206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper introduces a novel approach for extracting vessel navigation patterns from very large automatic identification system (AIS) trajectory big data. AIS trajectory data records are first converted to a series of code documents using vector quantisation, such as k-means and PQk-means algorithms, whose performance is evaluated in terms of precision and computational time. Therefore, a topic model is applied to these code documents from which vessels’ navigation patterns are extracted and identified. The potential of the proposed approach is illustrated by several experiments conducted with a practical AIS dataset in a region of North West France. These experimental results show that the proposed approach is highly appropriate for mining AIS trajectory big data and outperforms common DBSCAN algorithms and Gaussian mixture models.\",\"PeriodicalId\":50120,\"journal\":{\"name\":\"Journal of Navigation\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Navigation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/s0373463323000206\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0373463323000206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种从超大自动识别系统(AIS)航迹大数据中提取船舶导航模式的新方法。AIS轨迹数据记录首先使用矢量量化转换为一系列代码文档,如k-means和PQk-means算法,其性能根据精度和计算时间进行评估。因此,将主题模型应用于这些代码文档,从中提取和识别船只的导航模式。在法国西北部的一个地区用一个实用的AIS数据集进行的几个实验表明了所提出的方法的潜力。这些实验结果表明,该方法非常适合于AIS轨迹大数据的挖掘,并且优于常用的DBSCAN算法和高斯混合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Navigation pattern extraction from AIS trajectory big data via topic model
This paper introduces a novel approach for extracting vessel navigation patterns from very large automatic identification system (AIS) trajectory big data. AIS trajectory data records are first converted to a series of code documents using vector quantisation, such as k-means and PQk-means algorithms, whose performance is evaluated in terms of precision and computational time. Therefore, a topic model is applied to these code documents from which vessels’ navigation patterns are extracted and identified. The potential of the proposed approach is illustrated by several experiments conducted with a practical AIS dataset in a region of North West France. These experimental results show that the proposed approach is highly appropriate for mining AIS trajectory big data and outperforms common DBSCAN algorithms and Gaussian mixture models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Navigation
Journal of Navigation 工程技术-工程:海洋
CiteScore
6.10
自引率
4.20%
发文量
59
审稿时长
4.6 months
期刊介绍: The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信