给SSH社区的建议是:找一位语言学家

IASSIST quarterly Pub Date : 2021-03-29 DOI:10.29173/IQ992
J. Beeken
{"title":"给SSH社区的建议是:找一位语言学家","authors":"J. Beeken","doi":"10.29173/IQ992","DOIUrl":null,"url":null,"abstract":"In this paper we address how Natural Language Processing (NLP) approaches and language technology can contribute to data services in different ways; from providing social science users with new approaches and tools to explore oral and textual data, to enhancing the search, findability and retrieval of data sources. By using linguistic approaches we are able to process data, for example using Automated Speech Recognition (ASR) and named entity recognizers (NER), extract key concepts and terms, and improve search strategies.  We provide examples of how computational linguistics contribute to and facilitate the mining and analysis of oral or textual material, for example (transcribed) interviews or oral histories, and show how free open source (OS) tools can be used very easily to gain a quick overview of the key features of text, which can be further exploited as useful metadata.","PeriodicalId":84870,"journal":{"name":"IASSIST quarterly","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"recommendation to the SSH community: Take a linguist on board\",\"authors\":\"J. Beeken\",\"doi\":\"10.29173/IQ992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address how Natural Language Processing (NLP) approaches and language technology can contribute to data services in different ways; from providing social science users with new approaches and tools to explore oral and textual data, to enhancing the search, findability and retrieval of data sources. By using linguistic approaches we are able to process data, for example using Automated Speech Recognition (ASR) and named entity recognizers (NER), extract key concepts and terms, and improve search strategies.  We provide examples of how computational linguistics contribute to and facilitate the mining and analysis of oral or textual material, for example (transcribed) interviews or oral histories, and show how free open source (OS) tools can be used very easily to gain a quick overview of the key features of text, which can be further exploited as useful metadata.\",\"PeriodicalId\":84870,\"journal\":{\"name\":\"IASSIST quarterly\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IASSIST quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29173/IQ992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IASSIST quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29173/IQ992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们讨论了自然语言处理(NLP)方法和语言技术如何以不同的方式为数据服务做出贡献;从为社会科学用户提供探索口头和文本数据的新方法和工具,到增强数据源的搜索、可查找性和检索性。通过使用语言学方法,我们能够处理数据,例如使用自动语音识别(ASR)和命名实体识别器(NER),提取关键概念和术语,并改进搜索策略。我们提供了计算语言学如何帮助和促进口头或文本材料的挖掘和分析的例子,例如(转录的)采访或口头历史,并展示了如何非常容易地使用免费开源(OS)工具来快速概述文本的关键特征,这些特征可以作为有用的元数据进一步利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
recommendation to the SSH community: Take a linguist on board
In this paper we address how Natural Language Processing (NLP) approaches and language technology can contribute to data services in different ways; from providing social science users with new approaches and tools to explore oral and textual data, to enhancing the search, findability and retrieval of data sources. By using linguistic approaches we are able to process data, for example using Automated Speech Recognition (ASR) and named entity recognizers (NER), extract key concepts and terms, and improve search strategies.  We provide examples of how computational linguistics contribute to and facilitate the mining and analysis of oral or textual material, for example (transcribed) interviews or oral histories, and show how free open source (OS) tools can be used very easily to gain a quick overview of the key features of text, which can be further exploited as useful metadata.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信