心率变异性分析:1型糖尿病受试者的Higuchi和Katz分形维数

Q4 Medicine
D. Garner, Naiara Maria de Souza, L. Vanderlei
{"title":"心率变异性分析:1型糖尿病受试者的Higuchi和Katz分形维数","authors":"D. Garner, Naiara Maria de Souza, L. Vanderlei","doi":"10.2478/rjdnmd-2018-0034","DOIUrl":null,"url":null,"abstract":"Abstract Background and aims: Statistical markers are valuable when assessing physiological status over periods of time and in certain disease states. We assess if type 1 diabetes mellitus promote modification in the autonomic nervous system using the main two types of algorithms to estimate a Fractal Dimension: Higuchi and Katz. Material and methods: 46 adults were divided into two equal groups. The autonomic evaluation consisted of recording heart rate variability (HRV) for 30 minutes in supine position in absence of any other stimuli. Fractal dimensions ought then able to determine which series of interbeat intervals are derived from diabetics’ or not. We then equated results to observe which assessment gave the greatest significance by One-way analysis of variance (ANOVA1), Kruskal-Wallis technique and Cohen’s d effect sizes. Results: Katz’s fractal dimension is the most robust algorithm when assisted by a cubic spline interpolation (6 Hz) to increase the number of samples in the dataset. This was categorical after two tests for normality; then, ANOVA1, Kruskal-Wallis and Cohen’s d effect sizes (p≈0.01 and Cohen’s d=0.814143 –medium effect size). Conclusion: Diabetes significantly reduced the chaotic response as measured by Katz’s fractal dimension. Katz’s fractal dimension is a viable statistical marker for subjects with type 1 diabetes mellitus.","PeriodicalId":38700,"journal":{"name":"Romanian Journal of Diabetes, Nutrition and Metabolic Diseases","volume":"25 1","pages":"289 - 295"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Heart Rate Variability Analysis: Higuchi and Katz’s Fractal Dimensions in Subjects with Type 1 Diabetes Mellitus\",\"authors\":\"D. Garner, Naiara Maria de Souza, L. Vanderlei\",\"doi\":\"10.2478/rjdnmd-2018-0034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background and aims: Statistical markers are valuable when assessing physiological status over periods of time and in certain disease states. We assess if type 1 diabetes mellitus promote modification in the autonomic nervous system using the main two types of algorithms to estimate a Fractal Dimension: Higuchi and Katz. Material and methods: 46 adults were divided into two equal groups. The autonomic evaluation consisted of recording heart rate variability (HRV) for 30 minutes in supine position in absence of any other stimuli. Fractal dimensions ought then able to determine which series of interbeat intervals are derived from diabetics’ or not. We then equated results to observe which assessment gave the greatest significance by One-way analysis of variance (ANOVA1), Kruskal-Wallis technique and Cohen’s d effect sizes. Results: Katz’s fractal dimension is the most robust algorithm when assisted by a cubic spline interpolation (6 Hz) to increase the number of samples in the dataset. This was categorical after two tests for normality; then, ANOVA1, Kruskal-Wallis and Cohen’s d effect sizes (p≈0.01 and Cohen’s d=0.814143 –medium effect size). Conclusion: Diabetes significantly reduced the chaotic response as measured by Katz’s fractal dimension. Katz’s fractal dimension is a viable statistical marker for subjects with type 1 diabetes mellitus.\",\"PeriodicalId\":38700,\"journal\":{\"name\":\"Romanian Journal of Diabetes, Nutrition and Metabolic Diseases\",\"volume\":\"25 1\",\"pages\":\"289 - 295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Romanian Journal of Diabetes, Nutrition and Metabolic Diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rjdnmd-2018-0034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian Journal of Diabetes, Nutrition and Metabolic Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rjdnmd-2018-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 12

摘要

摘要背景和目的:统计标记在评估一段时间内和某些疾病状态下的生理状态时很有价值。我们使用Higuchi和Katz这两种主要的分形维数估计算法来评估1型糖尿病是否会促进自主神经系统的改变。材料和方法:46名成年人被分为两组。自主神经评估包括在没有任何其他刺激的情况下,在仰卧位记录30分钟的心率变异性(HRV)。然后,分形维数应该能够确定哪些序列的节间间隔来自糖尿病患者。然后,我们通过单向方差分析(ANOVA1)、Kruskal-Wallis技术和Cohen的d效应大小,将结果等同起来,观察哪种评估具有最大的显著性。结果:当使用三次样条插值(6 Hz)来增加数据集中的样本数量时,Katz的分形维数是最稳健的算法。在两次正常性测试后,这是明确的;然后,ANOVA1、Kruskal-Wallis和Cohen的d效应大小(p≈0.01,Cohen的d=0.814143–中等效应大小)。结论:用Katz分形维数测量,糖尿病可显著降低混沌反应。Katz的分形维数是1型糖尿病患者的一个可行的统计标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heart Rate Variability Analysis: Higuchi and Katz’s Fractal Dimensions in Subjects with Type 1 Diabetes Mellitus
Abstract Background and aims: Statistical markers are valuable when assessing physiological status over periods of time and in certain disease states. We assess if type 1 diabetes mellitus promote modification in the autonomic nervous system using the main two types of algorithms to estimate a Fractal Dimension: Higuchi and Katz. Material and methods: 46 adults were divided into two equal groups. The autonomic evaluation consisted of recording heart rate variability (HRV) for 30 minutes in supine position in absence of any other stimuli. Fractal dimensions ought then able to determine which series of interbeat intervals are derived from diabetics’ or not. We then equated results to observe which assessment gave the greatest significance by One-way analysis of variance (ANOVA1), Kruskal-Wallis technique and Cohen’s d effect sizes. Results: Katz’s fractal dimension is the most robust algorithm when assisted by a cubic spline interpolation (6 Hz) to increase the number of samples in the dataset. This was categorical after two tests for normality; then, ANOVA1, Kruskal-Wallis and Cohen’s d effect sizes (p≈0.01 and Cohen’s d=0.814143 –medium effect size). Conclusion: Diabetes significantly reduced the chaotic response as measured by Katz’s fractal dimension. Katz’s fractal dimension is a viable statistical marker for subjects with type 1 diabetes mellitus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
49
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信