低浓度氟化物对人类牙釉质的腐蚀保护:表面形态和纳米力学和抗磨损性能的结果

IF 1.6 Q4 ENGINEERING, BIOMEDICAL
L. Zheng, M. Shi
{"title":"低浓度氟化物对人类牙釉质的腐蚀保护:表面形态和纳米力学和抗磨损性能的结果","authors":"L. Zheng, M. Shi","doi":"10.1049/bsbt.2020.0017","DOIUrl":null,"url":null,"abstract":"Dental erosion results in excessive tooth wear. The contribution of low-concentration fluoride used daily in the prevention and treatment of erosion has not been fully understood. In this study, the effects of fluoride (225 ppm F−) on the surface morphology and nano-mechanical and anti-wear properties of human tooth enamel were investigated to explore whether low-concentration NaF solution could help protect tooth enamel from erosion. In total, 40 enamel samples were divided into 5 groups, viz. group O: original surface with no treatment, group F: fluoride treatment (NaF, 225 ppm F−, pH 6.3), group E: erosion treatment (0.001 M citric acid, pH 3.2, 3 min), group EF: erosion treatment and then fluorination and group FE: fluoride treatment and then erosion. The mechanical and anti-wear properties of enamel samples were examined using a nano-indentation/scratch technique. Both surface morphology and scratch morphology of enamel samples were observed with scanning electron microscopy. The results showed that, from the perspectives of surface morphology and anti-wear properties, fluorination with low-concentration fluoride (225 ppm F−) before erosion has a certain potential for protection against dental erosion. Fluoride treatment after erosion has no obvious impact on the remineralisation of eroded enamel.","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erosion protection of low‐concentration fluoride on human tooth enamel: results from surface morphology and nanomechanical and anti‐wear properties\",\"authors\":\"L. Zheng, M. Shi\",\"doi\":\"10.1049/bsbt.2020.0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dental erosion results in excessive tooth wear. The contribution of low-concentration fluoride used daily in the prevention and treatment of erosion has not been fully understood. In this study, the effects of fluoride (225 ppm F−) on the surface morphology and nano-mechanical and anti-wear properties of human tooth enamel were investigated to explore whether low-concentration NaF solution could help protect tooth enamel from erosion. In total, 40 enamel samples were divided into 5 groups, viz. group O: original surface with no treatment, group F: fluoride treatment (NaF, 225 ppm F−, pH 6.3), group E: erosion treatment (0.001 M citric acid, pH 3.2, 3 min), group EF: erosion treatment and then fluorination and group FE: fluoride treatment and then erosion. The mechanical and anti-wear properties of enamel samples were examined using a nano-indentation/scratch technique. Both surface morphology and scratch morphology of enamel samples were observed with scanning electron microscopy. The results showed that, from the perspectives of surface morphology and anti-wear properties, fluorination with low-concentration fluoride (225 ppm F−) before erosion has a certain potential for protection against dental erosion. Fluoride treatment after erosion has no obvious impact on the remineralisation of eroded enamel.\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1049/bsbt.2020.0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1049/bsbt.2020.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

牙齿腐蚀导致牙齿过度磨损。日常使用的低浓度氟化物在预防和治疗侵蚀中的作用尚未完全了解。在本研究中,研究了氟(225ppm F−)对人牙釉质表面形貌、纳米力学和抗磨损性能的影响,以探讨低浓度NaF溶液是否有助于保护牙釉质免受侵蚀。将40个牙釉质样品分为5组:O组:未处理的原始表面,F组:氟化处理(NaF, 225 ppm F−,pH 6.3), E组:腐蚀处理(0.001 M柠檬酸,pH 3.2, 3 min), EF组:腐蚀处理后氟化,FE组:氟化处理后腐蚀。采用纳米压痕/划痕技术研究了牙釉质样品的力学性能和抗磨损性能。用扫描电镜观察釉质样品的表面形貌和划痕形貌。结果表明,从表面形貌和抗磨损性能的角度来看,在腐蚀前用低浓度氟(225ppm F−)氟化具有一定的防牙蚀潜力。腐蚀后氟化处理对腐蚀牙釉质的再矿化无明显影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Erosion protection of low‐concentration fluoride on human tooth enamel: results from surface morphology and nanomechanical and anti‐wear properties
Dental erosion results in excessive tooth wear. The contribution of low-concentration fluoride used daily in the prevention and treatment of erosion has not been fully understood. In this study, the effects of fluoride (225 ppm F−) on the surface morphology and nano-mechanical and anti-wear properties of human tooth enamel were investigated to explore whether low-concentration NaF solution could help protect tooth enamel from erosion. In total, 40 enamel samples were divided into 5 groups, viz. group O: original surface with no treatment, group F: fluoride treatment (NaF, 225 ppm F−, pH 6.3), group E: erosion treatment (0.001 M citric acid, pH 3.2, 3 min), group EF: erosion treatment and then fluorination and group FE: fluoride treatment and then erosion. The mechanical and anti-wear properties of enamel samples were examined using a nano-indentation/scratch technique. Both surface morphology and scratch morphology of enamel samples were observed with scanning electron microscopy. The results showed that, from the perspectives of surface morphology and anti-wear properties, fluorination with low-concentration fluoride (225 ppm F−) before erosion has a certain potential for protection against dental erosion. Fluoride treatment after erosion has no obvious impact on the remineralisation of eroded enamel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信