{"title":"聚合物熔体混合物剪切流动引发的自组织","authors":"I. V. Gumennyi, A. Ya. Malkin, V. G. Kulichikhin","doi":"10.1134/S0965545X23700670","DOIUrl":null,"url":null,"abstract":"<p>Structure formation during deformation of a mixture of melts of a thermoplastic polymer (polysulfone) and a liquid crystal polymer has been investigated by means of analytical scanning electron microscopy. Viscosity of the LC polymer at high shear rate has been significantly lower in comparison with the thermoplastic. The experiment has been performed at controlled volume flow under conditions of flow through a capillary at a high and low deformation rate. The principal result of the observations has been the statement of self-organization effect manifested as the phase separation and formation of the regions with the increased concentration of the LC polymer in the thermoplastic matrix. Such system has been an emulsion, and a conical converging flow has been formed at the transition from the wide cylinder of the capillary viscometer to a narrow capillary installed at its bottom. Such geometry of deformation has led to the appearance of a longitudinal flow with the formation of jets (fibers) in the extrudate bulk and the surface layer of the liquid crystal polymer. Effective viscosity of the mixture has been lowered in comparison with this of the thermoplastic, due to self-assembly of the LC polymer.</p>","PeriodicalId":738,"journal":{"name":"Polymer Science, Series A","volume":"65 1","pages":"104 - 110"},"PeriodicalIF":1.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Organization Initiated by Shear Flow of Mixtures of Polymer Melts\",\"authors\":\"I. V. Gumennyi, A. Ya. Malkin, V. G. Kulichikhin\",\"doi\":\"10.1134/S0965545X23700670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Structure formation during deformation of a mixture of melts of a thermoplastic polymer (polysulfone) and a liquid crystal polymer has been investigated by means of analytical scanning electron microscopy. Viscosity of the LC polymer at high shear rate has been significantly lower in comparison with the thermoplastic. The experiment has been performed at controlled volume flow under conditions of flow through a capillary at a high and low deformation rate. The principal result of the observations has been the statement of self-organization effect manifested as the phase separation and formation of the regions with the increased concentration of the LC polymer in the thermoplastic matrix. Such system has been an emulsion, and a conical converging flow has been formed at the transition from the wide cylinder of the capillary viscometer to a narrow capillary installed at its bottom. Such geometry of deformation has led to the appearance of a longitudinal flow with the formation of jets (fibers) in the extrudate bulk and the surface layer of the liquid crystal polymer. Effective viscosity of the mixture has been lowered in comparison with this of the thermoplastic, due to self-assembly of the LC polymer.</p>\",\"PeriodicalId\":738,\"journal\":{\"name\":\"Polymer Science, Series A\",\"volume\":\"65 1\",\"pages\":\"104 - 110\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Science, Series A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965545X23700670\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series A","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S0965545X23700670","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Self-Organization Initiated by Shear Flow of Mixtures of Polymer Melts
Structure formation during deformation of a mixture of melts of a thermoplastic polymer (polysulfone) and a liquid crystal polymer has been investigated by means of analytical scanning electron microscopy. Viscosity of the LC polymer at high shear rate has been significantly lower in comparison with the thermoplastic. The experiment has been performed at controlled volume flow under conditions of flow through a capillary at a high and low deformation rate. The principal result of the observations has been the statement of self-organization effect manifested as the phase separation and formation of the regions with the increased concentration of the LC polymer in the thermoplastic matrix. Such system has been an emulsion, and a conical converging flow has been formed at the transition from the wide cylinder of the capillary viscometer to a narrow capillary installed at its bottom. Such geometry of deformation has led to the appearance of a longitudinal flow with the formation of jets (fibers) in the extrudate bulk and the surface layer of the liquid crystal polymer. Effective viscosity of the mixture has been lowered in comparison with this of the thermoplastic, due to self-assembly of the LC polymer.
期刊介绍:
Polymer Science, Series A is a journal published in collaboration with the Russian Academy of Sciences. Series A includes experimental and theoretical papers and reviews devoted to physicochemical studies of the structure and properties of polymers (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed. Online submission via Internet to the Series A, B, and C is available at http://polymsci.ru.