在受控温室环境中,对三种土壤湿度条件下的作物品种进行了覆盖试验

IF 1 4区 农林科学 Q3 AGRONOMY
M.L. Ben Kalifa, H. VanVolkenburg, L. Vasseur
{"title":"在受控温室环境中,对三种土壤湿度条件下的作物品种进行了覆盖试验","authors":"M.L. Ben Kalifa, H. VanVolkenburg, L. Vasseur","doi":"10.1139/cjps-2022-0188","DOIUrl":null,"url":null,"abstract":"Abstract Extreme climatic events, such as drought and heavy rainfall, are increasing with climate change. These events can threaten agroecosystems, including vineyards. Cover crops are often grown in vineyards for various reasons and can be an effective strategy for climate change adaptation. Understanding which cover crop species can establish well under extreme climate conditions is important. We conducted a greenhouse experiment to investigate the responses of nine cover crop species to overwatered and water-deficit conditions. Treatments included (1) overwatered soil condition, watered at 100% field capacity daily, (2) control, watered at 60%–70% every other day, and (3) water deficit, watered at 15%–20% weekly for 53 growing days. Results indicated that the total dry weight of all species decreased (most significantly) under water-deficit conditions. However, pubescent wheatgrass and red fescue did not exhibit any stress symptoms. Apart from alfalfa, all species established well under overwatered conditions despite slight yellowing of foliage for crimson clover and hairy vetch. Pearl millet and yellow sweet clover had the best establishment regardless of conditions. Our results provide important information on the selection of cover crops that can withstand climatic variability and thrive in the extreme conditions linked to the climate change scenario in Canada.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"175 - 183"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Testing cover crop species under three soil moisture conditions in a controlled greenhouse environment\",\"authors\":\"M.L. Ben Kalifa, H. VanVolkenburg, L. Vasseur\",\"doi\":\"10.1139/cjps-2022-0188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Extreme climatic events, such as drought and heavy rainfall, are increasing with climate change. These events can threaten agroecosystems, including vineyards. Cover crops are often grown in vineyards for various reasons and can be an effective strategy for climate change adaptation. Understanding which cover crop species can establish well under extreme climate conditions is important. We conducted a greenhouse experiment to investigate the responses of nine cover crop species to overwatered and water-deficit conditions. Treatments included (1) overwatered soil condition, watered at 100% field capacity daily, (2) control, watered at 60%–70% every other day, and (3) water deficit, watered at 15%–20% weekly for 53 growing days. Results indicated that the total dry weight of all species decreased (most significantly) under water-deficit conditions. However, pubescent wheatgrass and red fescue did not exhibit any stress symptoms. Apart from alfalfa, all species established well under overwatered conditions despite slight yellowing of foliage for crimson clover and hairy vetch. Pearl millet and yellow sweet clover had the best establishment regardless of conditions. Our results provide important information on the selection of cover crops that can withstand climatic variability and thrive in the extreme conditions linked to the climate change scenario in Canada.\",\"PeriodicalId\":9530,\"journal\":{\"name\":\"Canadian Journal of Plant Science\",\"volume\":\"103 1\",\"pages\":\"175 - 183\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/cjps-2022-0188\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjps-2022-0188","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1

摘要

摘要极端气候事件,如干旱和强降雨,随着气候变化而增加。这些事件可能威胁到包括葡萄园在内的农业生态系统。由于各种原因,葡萄园通常种植覆盖作物,这可能是适应气候变化的有效策略。了解哪些覆盖作物物种能够在极端气候条件下很好地建立是很重要的。我们进行了一项温室实验,研究了九种覆盖作物对水分过多和缺水条件的反应。处理包括(1)土壤水分过多,每天以100%的田间容量浇水;(2)对照,每隔一天以60%-70%的水分浇水;(3)缺水,每周以15%-20%的水分浇水53个生长日。结果表明,在缺水条件下,所有物种的总干重均下降(最显著)。然而,青春期麦草和红羊茅没有表现出任何应激症状。除了苜蓿,所有物种都在水分过多的条件下建立了良好的关系,尽管深红色三叶草和长毛兽医的叶子略有发黄。无论在何种条件下,珍珠小米和黄三叶草都有最好的植株。我们的研究结果为选择能够承受气候变化并在与加拿大气候变化情景相关的极端条件下茁壮成长的覆盖作物提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing cover crop species under three soil moisture conditions in a controlled greenhouse environment
Abstract Extreme climatic events, such as drought and heavy rainfall, are increasing with climate change. These events can threaten agroecosystems, including vineyards. Cover crops are often grown in vineyards for various reasons and can be an effective strategy for climate change adaptation. Understanding which cover crop species can establish well under extreme climate conditions is important. We conducted a greenhouse experiment to investigate the responses of nine cover crop species to overwatered and water-deficit conditions. Treatments included (1) overwatered soil condition, watered at 100% field capacity daily, (2) control, watered at 60%–70% every other day, and (3) water deficit, watered at 15%–20% weekly for 53 growing days. Results indicated that the total dry weight of all species decreased (most significantly) under water-deficit conditions. However, pubescent wheatgrass and red fescue did not exhibit any stress symptoms. Apart from alfalfa, all species established well under overwatered conditions despite slight yellowing of foliage for crimson clover and hairy vetch. Pearl millet and yellow sweet clover had the best establishment regardless of conditions. Our results provide important information on the selection of cover crops that can withstand climatic variability and thrive in the extreme conditions linked to the climate change scenario in Canada.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
8.30%
发文量
91
审稿时长
1 months
期刊介绍: Published since 1957, the Canadian Journal of Plant Science is a bimonthly journal that contains new research on all aspects of plant science relevant to continental climate agriculture, including plant production and management (grain, forage, industrial, and alternative crops), horticulture (fruit, vegetable, ornamental, greenhouse, and alternative crops), and pest management (entomology, plant pathology, and weed science). Cross-disciplinary research in the application of technology, plant breeding, genetics, physiology, biotechnology, microbiology, soil management, economics, meteorology, post-harvest biology, and plant production systems is also published. Research that makes a significant contribution to the advancement of knowledge of crop, horticulture, and weed sciences (e.g., drought or stress resistance), but not directly applicable to the environmental regions of Canadian agriculture, may also be considered. The Journal also publishes reviews, letters to the editor, the abstracts of technical papers presented at the meetings of the sponsoring societies, and occasionally conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信