厄密对称空间中的同伦交换性

Pub Date : 2022-01-31 DOI:10.1017/S0017089522000118
D. Kishimoto, Masahiro Takeda, Yichen Tong
{"title":"厄密对称空间中的同伦交换性","authors":"D. Kishimoto, Masahiro Takeda, Yichen Tong","doi":"10.1017/S0017089522000118","DOIUrl":null,"url":null,"abstract":"Abstract Ganea proved that the loop space of \n$\\mathbb{C} P^n$\n is homotopy commutative if and only if \n$n=3$\n . We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but \n$\\mathbb{C} P^3$\n are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds \n$G/T$\n for a maximal torus T of a compact, connected Lie group G.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Homotopy commutativity in Hermitian symmetric spaces\",\"authors\":\"D. Kishimoto, Masahiro Takeda, Yichen Tong\",\"doi\":\"10.1017/S0017089522000118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ganea proved that the loop space of \\n$\\\\mathbb{C} P^n$\\n is homotopy commutative if and only if \\n$n=3$\\n . We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but \\n$\\\\mathbb{C} P^3$\\n are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds \\n$G/T$\\n for a maximal torus T of a compact, connected Lie group G.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089522000118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089522000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要Ganea证明了$\mathbb{C}P^n$的循环空间是同胚交换的当且仅当$n=3$。我们将这一结果推广到除$\mathbb{C}P^3$以外的所有不可约Hermitian对称空间的环空间都不是同胚交换的。该计算也适用于确定紧致连通李群G的极大环面T的广义标志流形$G/T$的环空间的同伦幂零性类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homotopy commutativity in Hermitian symmetric spaces
Abstract Ganea proved that the loop space of $\mathbb{C} P^n$ is homotopy commutative if and only if $n=3$ . We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but $\mathbb{C} P^3$ are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds $G/T$ for a maximal torus T of a compact, connected Lie group G.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信