{"title":"厄密对称空间中的同伦交换性","authors":"D. Kishimoto, Masahiro Takeda, Yichen Tong","doi":"10.1017/S0017089522000118","DOIUrl":null,"url":null,"abstract":"Abstract Ganea proved that the loop space of \n$\\mathbb{C} P^n$\n is homotopy commutative if and only if \n$n=3$\n . We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but \n$\\mathbb{C} P^3$\n are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds \n$G/T$\n for a maximal torus T of a compact, connected Lie group G.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Homotopy commutativity in Hermitian symmetric spaces\",\"authors\":\"D. Kishimoto, Masahiro Takeda, Yichen Tong\",\"doi\":\"10.1017/S0017089522000118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Ganea proved that the loop space of \\n$\\\\mathbb{C} P^n$\\n is homotopy commutative if and only if \\n$n=3$\\n . We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but \\n$\\\\mathbb{C} P^3$\\n are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds \\n$G/T$\\n for a maximal torus T of a compact, connected Lie group G.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0017089522000118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089522000118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Homotopy commutativity in Hermitian symmetric spaces
Abstract Ganea proved that the loop space of
$\mathbb{C} P^n$
is homotopy commutative if and only if
$n=3$
. We generalize this result to that the loop spaces of all irreducible Hermitian symmetric spaces but
$\mathbb{C} P^3$
are not homotopy commutative. The computation also applies to determining the homotopy nilpotency class of the loop spaces of generalized flag manifolds
$G/T$
for a maximal torus T of a compact, connected Lie group G.