非线性pi -4方程的确定性和随机解

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
M. Abdelrahman, M. Sohaly, S. Ammar, Yousef F. Alharbi
{"title":"非线性pi -4方程的确定性和随机解","authors":"M. Abdelrahman, M. Sohaly, S. Ammar, Yousef F. Alharbi","doi":"10.1515/ijnsns-2022-2272","DOIUrl":null,"url":null,"abstract":"Abstract In the present work, the exp(−φ(ξ))-expansion method is applied for solving the deterministic and stochastic Phi-4 equation. Namely, we introduce hyperbolic, trigonometric, and rational function solutions. The computational study shows that the offered method is pretentious, robust, and influential in applications of interesting analysis, observations of particle physics, plasma physics, quantum field theory, and fluid dynamics. The control on the randomness input (the coefficients are random variables) is studied in order to obtain stability stochastic process solution with beta distribution. In this work, we will deal with stability moment method and then we apply the mean square calculus for the stability concept.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":"23 1","pages":"823 - 832"},"PeriodicalIF":1.4000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The deterministic and stochastic solutions for the nonlinear Phi-4 equation\",\"authors\":\"M. Abdelrahman, M. Sohaly, S. Ammar, Yousef F. Alharbi\",\"doi\":\"10.1515/ijnsns-2022-2272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present work, the exp(−φ(ξ))-expansion method is applied for solving the deterministic and stochastic Phi-4 equation. Namely, we introduce hyperbolic, trigonometric, and rational function solutions. The computational study shows that the offered method is pretentious, robust, and influential in applications of interesting analysis, observations of particle physics, plasma physics, quantum field theory, and fluid dynamics. The control on the randomness input (the coefficients are random variables) is studied in order to obtain stability stochastic process solution with beta distribution. In this work, we will deal with stability moment method and then we apply the mean square calculus for the stability concept.\",\"PeriodicalId\":50304,\"journal\":{\"name\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"volume\":\"23 1\",\"pages\":\"823 - 832\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nonlinear Sciences and Numerical Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijnsns-2022-2272\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2022-2272","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文应用exp(−φ(ξ))展开法求解确定性和随机的pi -4方程。也就是说,我们引入双曲、三角和有理函数解。计算研究表明,该方法在粒子物理、等离子体物理、量子场论和流体动力学的有趣分析、观测中具有很强的鲁棒性和影响力。为了得到具有beta分布的稳定随机过程解,研究了对随机输入(系数为随机变量)的控制。在本工作中,我们将处理稳定矩法,然后将均方微积分应用于稳定性概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The deterministic and stochastic solutions for the nonlinear Phi-4 equation
Abstract In the present work, the exp(−φ(ξ))-expansion method is applied for solving the deterministic and stochastic Phi-4 equation. Namely, we introduce hyperbolic, trigonometric, and rational function solutions. The computational study shows that the offered method is pretentious, robust, and influential in applications of interesting analysis, observations of particle physics, plasma physics, quantum field theory, and fluid dynamics. The control on the randomness input (the coefficients are random variables) is studied in order to obtain stability stochastic process solution with beta distribution. In this work, we will deal with stability moment method and then we apply the mean square calculus for the stability concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信