优化从植物标本中提取高效PCR扩增DNA

IF 2.7 3区 生物学 Q2 PLANT SCIENCES
Fred E. Gouker, Yonghong Guo, Harlan T. Svoboda, Margaret R. Pooler
{"title":"优化从植物标本中提取高效PCR扩增DNA","authors":"Fred E. Gouker,&nbsp;Yonghong Guo,&nbsp;Harlan T. Svoboda,&nbsp;Margaret R. Pooler","doi":"10.1002/aps3.11521","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>The objective of this study was to optimize an existing DNA extraction protocol for recalcitrant plant taxa to obtain high-quality DNA from preserved herbarium tissue suitable for downstream PCR applications.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>Leaf tissue from 30 diverse plant species was obtained from the U.S. National Arboretum Herbarium. Our previous DNA extraction protocol (Gouker et al., 2020, <i>Applications in Plant Sciences</i> 8: e11403) was improved by use of 10X Tris-EDTA buffer, addition of polyvinylpolypyrrolidone, and omission of sample heating during homogenization, and resulted in total DNA yields ranging from 60–2460 ng. Optimized PCR amplification using universal plant primers for the ITS-p3/u4 region and the P6 loop of the <i>trnL</i> (UAA) chloroplast intron was successful for most specimens.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This protocol, which is simple, fast, and uses standard laboratory-grade chemicals, yields DNA from herbarium specimens that is comparable in quality to that from commercially available kits, and is of sufficient quality and quantity for other applications.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11521","citationCount":"2","resultStr":"{\"title\":\"Optimizing efficient PCR-amplifiable DNA extraction from herbarium specimens\",\"authors\":\"Fred E. Gouker,&nbsp;Yonghong Guo,&nbsp;Harlan T. Svoboda,&nbsp;Margaret R. Pooler\",\"doi\":\"10.1002/aps3.11521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Premise</h3>\\n \\n <p>The objective of this study was to optimize an existing DNA extraction protocol for recalcitrant plant taxa to obtain high-quality DNA from preserved herbarium tissue suitable for downstream PCR applications.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and Results</h3>\\n \\n <p>Leaf tissue from 30 diverse plant species was obtained from the U.S. National Arboretum Herbarium. Our previous DNA extraction protocol (Gouker et al., 2020, <i>Applications in Plant Sciences</i> 8: e11403) was improved by use of 10X Tris-EDTA buffer, addition of polyvinylpolypyrrolidone, and omission of sample heating during homogenization, and resulted in total DNA yields ranging from 60–2460 ng. Optimized PCR amplification using universal plant primers for the ITS-p3/u4 region and the P6 loop of the <i>trnL</i> (UAA) chloroplast intron was successful for most specimens.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>This protocol, which is simple, fast, and uses standard laboratory-grade chemicals, yields DNA from herbarium specimens that is comparable in quality to that from commercially available kits, and is of sufficient quality and quantity for other applications.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8022,\"journal\":{\"name\":\"Applications in Plant Sciences\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11521\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11521\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11521","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

本研究的目的是优化现有的顽固植物类群DNA提取方案,以从保存的植物标本组织中获得适合下游PCR应用的高质量DNA。方法与结果从美国国家植物标本室获得30种不同植物的叶片组织。我们之前的DNA提取方案(Gouker et al., 2020, Applications in Plant Sciences 8: e11403)通过使用10X Tris-EDTA缓冲液,添加聚乙烯聚吡咯烷酮,以及在均质化过程中省略样品加热来改进,并导致总DNA产量在60-2460 ng之间。使用通用植物引物优化的PCR扩增对trnL (UAA)叶绿体内含子的ts -p3/u4区和P6环在大多数标本中都是成功的。该方法简单、快速,使用标准的实验室级化学品,从植物标本馆标本中获得的DNA质量与市售试剂盒相当,并且具有足够的质量和数量用于其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing efficient PCR-amplifiable DNA extraction from herbarium specimens

Optimizing efficient PCR-amplifiable DNA extraction from herbarium specimens

Premise

The objective of this study was to optimize an existing DNA extraction protocol for recalcitrant plant taxa to obtain high-quality DNA from preserved herbarium tissue suitable for downstream PCR applications.

Methods and Results

Leaf tissue from 30 diverse plant species was obtained from the U.S. National Arboretum Herbarium. Our previous DNA extraction protocol (Gouker et al., 2020, Applications in Plant Sciences 8: e11403) was improved by use of 10X Tris-EDTA buffer, addition of polyvinylpolypyrrolidone, and omission of sample heating during homogenization, and resulted in total DNA yields ranging from 60–2460 ng. Optimized PCR amplification using universal plant primers for the ITS-p3/u4 region and the P6 loop of the trnL (UAA) chloroplast intron was successful for most specimens.

Conclusions

This protocol, which is simple, fast, and uses standard laboratory-grade chemicals, yields DNA from herbarium specimens that is comparable in quality to that from commercially available kits, and is of sufficient quality and quantity for other applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
50
审稿时长
12 weeks
期刊介绍: Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences. APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信