M. Kazeem, H. Bankole, A. Fatai, Temitope Samson Oguntubi, A. Kappo
{"title":"胡萝卜对多元醇途径酶的非竞争性抑制作用。糖尿病的提取与处理","authors":"M. Kazeem, H. Bankole, A. Fatai, Temitope Samson Oguntubi, A. Kappo","doi":"10.2174/1573408019666230613114052","DOIUrl":null,"url":null,"abstract":"\n\nThe growing occurrence of complications associated with diabetes calls for the unending exploration of natural products for more efficient therapeutic substances. The polyol pathway is a foundational scheme involved in the development of diabetic complications. Retarding the activities of enzymes in the polyol pathway is, therefore, a potent method of managing these complications.\n\n\n\nThis work assessed the ability of four non-leafy vegetables, namely Daucus carota Linn. (carrot), Abelmoschus esculentus (L.) Moench (okra), Allium cepa Linn. (onion), and Lycopersicon esculentum Mill. (tomato), to inhibit the activities of aldose reductase and sorbitol dehydrogenase.\n\n\n\nThe vegetables’ ability was evaluated by incubating the vegetables with suitable enzymes and substrates. Sample(s) with the lowest inhibitory concentration (IC50) was utilized to determine the mechanism of action of the enzymes by constructing the Lineweaver-Burk graph.\n\n\n\nResults showed that the aqueous extract of carrot exhibited the lowest IC50 value for the inhibition of both aldose reductase (135.17 µg/mL) and sorbitol dehydrogenase (14.64 µg/mL), respectively. The double reciprocal plot also showed that the aqueous extract of carrot inhibited both aldose reductase and sorbitol dehydrogenase in an uncompetitive fashion.\n\n\n\nAqueous extract of carrot successfully retarded the action of polyol pathway enzymes, which may result in the recovery of diabetic complications. This activity may due to the availability of phytochemicals, including carotenoids and phenylacetylenes.\n","PeriodicalId":35405,"journal":{"name":"Current Enzyme Inhibition","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncompetitive inhibition of polyol pathway enzymes by Daucus carota Linn. extract and management of diabetes mellitus\",\"authors\":\"M. Kazeem, H. Bankole, A. Fatai, Temitope Samson Oguntubi, A. Kappo\",\"doi\":\"10.2174/1573408019666230613114052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe growing occurrence of complications associated with diabetes calls for the unending exploration of natural products for more efficient therapeutic substances. The polyol pathway is a foundational scheme involved in the development of diabetic complications. Retarding the activities of enzymes in the polyol pathway is, therefore, a potent method of managing these complications.\\n\\n\\n\\nThis work assessed the ability of four non-leafy vegetables, namely Daucus carota Linn. (carrot), Abelmoschus esculentus (L.) Moench (okra), Allium cepa Linn. (onion), and Lycopersicon esculentum Mill. (tomato), to inhibit the activities of aldose reductase and sorbitol dehydrogenase.\\n\\n\\n\\nThe vegetables’ ability was evaluated by incubating the vegetables with suitable enzymes and substrates. Sample(s) with the lowest inhibitory concentration (IC50) was utilized to determine the mechanism of action of the enzymes by constructing the Lineweaver-Burk graph.\\n\\n\\n\\nResults showed that the aqueous extract of carrot exhibited the lowest IC50 value for the inhibition of both aldose reductase (135.17 µg/mL) and sorbitol dehydrogenase (14.64 µg/mL), respectively. The double reciprocal plot also showed that the aqueous extract of carrot inhibited both aldose reductase and sorbitol dehydrogenase in an uncompetitive fashion.\\n\\n\\n\\nAqueous extract of carrot successfully retarded the action of polyol pathway enzymes, which may result in the recovery of diabetic complications. This activity may due to the availability of phytochemicals, including carotenoids and phenylacetylenes.\\n\",\"PeriodicalId\":35405,\"journal\":{\"name\":\"Current Enzyme Inhibition\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Enzyme Inhibition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1573408019666230613114052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Enzyme Inhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1573408019666230613114052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Uncompetitive inhibition of polyol pathway enzymes by Daucus carota Linn. extract and management of diabetes mellitus
The growing occurrence of complications associated with diabetes calls for the unending exploration of natural products for more efficient therapeutic substances. The polyol pathway is a foundational scheme involved in the development of diabetic complications. Retarding the activities of enzymes in the polyol pathway is, therefore, a potent method of managing these complications.
This work assessed the ability of four non-leafy vegetables, namely Daucus carota Linn. (carrot), Abelmoschus esculentus (L.) Moench (okra), Allium cepa Linn. (onion), and Lycopersicon esculentum Mill. (tomato), to inhibit the activities of aldose reductase and sorbitol dehydrogenase.
The vegetables’ ability was evaluated by incubating the vegetables with suitable enzymes and substrates. Sample(s) with the lowest inhibitory concentration (IC50) was utilized to determine the mechanism of action of the enzymes by constructing the Lineweaver-Burk graph.
Results showed that the aqueous extract of carrot exhibited the lowest IC50 value for the inhibition of both aldose reductase (135.17 µg/mL) and sorbitol dehydrogenase (14.64 µg/mL), respectively. The double reciprocal plot also showed that the aqueous extract of carrot inhibited both aldose reductase and sorbitol dehydrogenase in an uncompetitive fashion.
Aqueous extract of carrot successfully retarded the action of polyol pathway enzymes, which may result in the recovery of diabetic complications. This activity may due to the availability of phytochemicals, including carotenoids and phenylacetylenes.
期刊介绍:
Current Enzyme Inhibition aims to publish all the latest and outstanding developments in enzyme inhibition studies with regards to the mechanisms of inhibitory processes of enzymes, recognition of active sites, and the discovery of agonists and antagonists, leading to the design and development of new drugs of significant therapeutic value. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of enzymes that can be exploited for drug development. Current Enzyme Inhibition is an essential journal for every pharmaceutical and medicinal chemist who wishes to have up-to-date knowledge about each and every development in the study of enzyme inhibition.