Karen Martinez-Swatson, Carmen Quiñonero-López, Madeleine Ernst, Nina Rønsted, Christopher James Barnes, Henrik Toft Simonsen
{"title":"甘薯的信号素和诱导化学防御","authors":"Karen Martinez-Swatson, Carmen Quiñonero-López, Madeleine Ernst, Nina Rønsted, Christopher James Barnes, Henrik Toft Simonsen","doi":"10.1007/s00049-020-00315-3","DOIUrl":null,"url":null,"abstract":"<p>Thapsigargin and related compounds are produced by <i>Thapsia garganica</i> L. (Apiaceae) and are thought to be a defence compound against herbivory. Thapsigargin inhibits the sarco-endoplasmic reticulum Ca<sup>2+</sup>-ATPase (SERCA) in both vertebrates and invertebrates. This activity is responsible for its potent toxicity, as well as the potential use to treat solid tumours. However, the ecological role and regulation of thapsigargin are not well understood, and the aim of this study was to investigate if thapsigargin biosynthesis was responsive to leaf damage. To test the response to potential leaf damage during a?herbivory, greenhouse plants were subjected to clipping to mimic the physical damage. Unclipped versus clipped plants were sampled for chemical analysis and the gene expression for the two known thapsigargin biosynthetic genes (TgTPS2 and TgCYP76AE2) was investigated. Data obtained by LC–ESI–MS/MS were used to perform molecular networking to identify chemical constituents related to thapsigargin and its biosynthesis. The results show a significant change in a plant’s chemical profile after mimicking an herbivory event. Both the chemical analysis and gene expression data show that <i>T. garganica</i> plants can induce the biosynthesis of this class of defence compounds at the site of an attack. Thapsigargins are clearly the dominant defence compounds in these plants, and they seem to be produced through a common biosynthetic pathway with little diversity. This likely means that <i>T. garganica</i> has a relatively simple response to herbivory, as opposed to many other plant species that have been shown to have complex metabolite responses to herbivory.</p>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"30 5","pages":"255 - 267"},"PeriodicalIF":1.6000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00049-020-00315-3","citationCount":"1","resultStr":"{\"title\":\"Thapsigargins and induced chemical defence in Thapsia garganica\",\"authors\":\"Karen Martinez-Swatson, Carmen Quiñonero-López, Madeleine Ernst, Nina Rønsted, Christopher James Barnes, Henrik Toft Simonsen\",\"doi\":\"10.1007/s00049-020-00315-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thapsigargin and related compounds are produced by <i>Thapsia garganica</i> L. (Apiaceae) and are thought to be a defence compound against herbivory. Thapsigargin inhibits the sarco-endoplasmic reticulum Ca<sup>2+</sup>-ATPase (SERCA) in both vertebrates and invertebrates. This activity is responsible for its potent toxicity, as well as the potential use to treat solid tumours. However, the ecological role and regulation of thapsigargin are not well understood, and the aim of this study was to investigate if thapsigargin biosynthesis was responsive to leaf damage. To test the response to potential leaf damage during a?herbivory, greenhouse plants were subjected to clipping to mimic the physical damage. Unclipped versus clipped plants were sampled for chemical analysis and the gene expression for the two known thapsigargin biosynthetic genes (TgTPS2 and TgCYP76AE2) was investigated. Data obtained by LC–ESI–MS/MS were used to perform molecular networking to identify chemical constituents related to thapsigargin and its biosynthesis. The results show a significant change in a plant’s chemical profile after mimicking an herbivory event. Both the chemical analysis and gene expression data show that <i>T. garganica</i> plants can induce the biosynthesis of this class of defence compounds at the site of an attack. Thapsigargins are clearly the dominant defence compounds in these plants, and they seem to be produced through a common biosynthetic pathway with little diversity. This likely means that <i>T. garganica</i> has a relatively simple response to herbivory, as opposed to many other plant species that have been shown to have complex metabolite responses to herbivory.</p>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"30 5\",\"pages\":\"255 - 267\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00049-020-00315-3\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-020-00315-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-020-00315-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Thapsigargins and induced chemical defence in Thapsia garganica
Thapsigargin and related compounds are produced by Thapsia garganica L. (Apiaceae) and are thought to be a defence compound against herbivory. Thapsigargin inhibits the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) in both vertebrates and invertebrates. This activity is responsible for its potent toxicity, as well as the potential use to treat solid tumours. However, the ecological role and regulation of thapsigargin are not well understood, and the aim of this study was to investigate if thapsigargin biosynthesis was responsive to leaf damage. To test the response to potential leaf damage during a?herbivory, greenhouse plants were subjected to clipping to mimic the physical damage. Unclipped versus clipped plants were sampled for chemical analysis and the gene expression for the two known thapsigargin biosynthetic genes (TgTPS2 and TgCYP76AE2) was investigated. Data obtained by LC–ESI–MS/MS were used to perform molecular networking to identify chemical constituents related to thapsigargin and its biosynthesis. The results show a significant change in a plant’s chemical profile after mimicking an herbivory event. Both the chemical analysis and gene expression data show that T. garganica plants can induce the biosynthesis of this class of defence compounds at the site of an attack. Thapsigargins are clearly the dominant defence compounds in these plants, and they seem to be produced through a common biosynthetic pathway with little diversity. This likely means that T. garganica has a relatively simple response to herbivory, as opposed to many other plant species that have been shown to have complex metabolite responses to herbivory.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.