{"title":"生物质核黄素磷酸钠构建可持续着色多功能蛋白丝织物","authors":"Wen-Jie Jin, Yu Xin, Xian-Wei Cheng, Jin-Ping Guan, Guo-Qiang Chen","doi":"10.1007/s11705-023-2321-0","DOIUrl":null,"url":null,"abstract":"<div><p>Riboflavin sodium phosphate has been confirmed as a promising biomass product derived from natural plants. In this paper, a novel method of dyeing and multifunctional modification of silk fabric by impregnation with riboflavin sodium phosphate was proposed, such that protein silk fabric can be endowed with bright yellow color and multi-functionality. The results of this paper confirmed that the pH and concentration of riboflavin sodium phosphate solution are critical factors for dyeing and multifunctional modification. Attractively, the photochromic performance was one of the most distinctive features of the modified silk fabric, and the dyed silk fabric turned into fluorescent green from original yellow under 365 nm ultraviolet lamp. Furthermore, the modified silk fabric exhibited good antibacterial properties with a high inhibition rate of 92% for <i>Escherichia coli</i>. Besides, the flame retardancy of silk fabric was significantly improved after modification. The damaged length of modified silk fabric with 40% owf riboflavin sodium phosphate was lower than 10.4 cm and passed the B<sub>1</sub> classification. As revealed by the result of this paper, riboflavin sodium phosphate is sufficiently effective in serving as an ecofriendly multifunctional agent for strengthening the add-value of silk textiles.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 8","pages":"1131 - 1139"},"PeriodicalIF":4.3000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of sustainable, colored and multifunctional protein silk fabric using biomass riboflavin sodium phosphate\",\"authors\":\"Wen-Jie Jin, Yu Xin, Xian-Wei Cheng, Jin-Ping Guan, Guo-Qiang Chen\",\"doi\":\"10.1007/s11705-023-2321-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Riboflavin sodium phosphate has been confirmed as a promising biomass product derived from natural plants. In this paper, a novel method of dyeing and multifunctional modification of silk fabric by impregnation with riboflavin sodium phosphate was proposed, such that protein silk fabric can be endowed with bright yellow color and multi-functionality. The results of this paper confirmed that the pH and concentration of riboflavin sodium phosphate solution are critical factors for dyeing and multifunctional modification. Attractively, the photochromic performance was one of the most distinctive features of the modified silk fabric, and the dyed silk fabric turned into fluorescent green from original yellow under 365 nm ultraviolet lamp. Furthermore, the modified silk fabric exhibited good antibacterial properties with a high inhibition rate of 92% for <i>Escherichia coli</i>. Besides, the flame retardancy of silk fabric was significantly improved after modification. The damaged length of modified silk fabric with 40% owf riboflavin sodium phosphate was lower than 10.4 cm and passed the B<sub>1</sub> classification. As revealed by the result of this paper, riboflavin sodium phosphate is sufficiently effective in serving as an ecofriendly multifunctional agent for strengthening the add-value of silk textiles.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"17 8\",\"pages\":\"1131 - 1139\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-023-2321-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-023-2321-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Construction of sustainable, colored and multifunctional protein silk fabric using biomass riboflavin sodium phosphate
Riboflavin sodium phosphate has been confirmed as a promising biomass product derived from natural plants. In this paper, a novel method of dyeing and multifunctional modification of silk fabric by impregnation with riboflavin sodium phosphate was proposed, such that protein silk fabric can be endowed with bright yellow color and multi-functionality. The results of this paper confirmed that the pH and concentration of riboflavin sodium phosphate solution are critical factors for dyeing and multifunctional modification. Attractively, the photochromic performance was one of the most distinctive features of the modified silk fabric, and the dyed silk fabric turned into fluorescent green from original yellow under 365 nm ultraviolet lamp. Furthermore, the modified silk fabric exhibited good antibacterial properties with a high inhibition rate of 92% for Escherichia coli. Besides, the flame retardancy of silk fabric was significantly improved after modification. The damaged length of modified silk fabric with 40% owf riboflavin sodium phosphate was lower than 10.4 cm and passed the B1 classification. As revealed by the result of this paper, riboflavin sodium phosphate is sufficiently effective in serving as an ecofriendly multifunctional agent for strengthening the add-value of silk textiles.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.