基于机器学习和深度学习技术的阿尔茨海默病多类别诊断分析

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
A. Begum, Prabha Selvaraj
{"title":"基于机器学习和深度学习技术的阿尔茨海默病多类别诊断分析","authors":"A. Begum, Prabha Selvaraj","doi":"10.1142/s0219467824500311","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease (AD) is a popular neurological disorder affecting a critical part of the world’s population. Its early diagnosis is extremely imperative for enhancing the quality of patients’ lives. Recently, improved technologies like image processing, artificial intelligence involving machine learning, deep learning, and transfer learning have been introduced for detecting AD. This review describes the contribution of image processing, feature extraction, optimization, and classification approach in AD recognition. It deeply investigates different methods adopted for multiclass diagnosis of AD. The paper further presents a brief comparison of existing AD studies in terms of techniques adopted, performance measures, classification accuracy, publication year, and datasets. It then summarizes the important technical barriers in reviewed works. This paper allows the readers to gain profound knowledge regarding AD diagnosis for promoting extensive research in this field.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiclass Diagnosis of Alzheimer’s Disease Analysis Using Machine Learning and Deep Learning Techniques\",\"authors\":\"A. Begum, Prabha Selvaraj\",\"doi\":\"10.1142/s0219467824500311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer’s disease (AD) is a popular neurological disorder affecting a critical part of the world’s population. Its early diagnosis is extremely imperative for enhancing the quality of patients’ lives. Recently, improved technologies like image processing, artificial intelligence involving machine learning, deep learning, and transfer learning have been introduced for detecting AD. This review describes the contribution of image processing, feature extraction, optimization, and classification approach in AD recognition. It deeply investigates different methods adopted for multiclass diagnosis of AD. The paper further presents a brief comparison of existing AD studies in terms of techniques adopted, performance measures, classification accuracy, publication year, and datasets. It then summarizes the important technical barriers in reviewed works. This paper allows the readers to gain profound knowledge regarding AD diagnosis for promoting extensive research in this field.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467824500311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467824500311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是一种流行的神经系统疾病,影响着世界人口的重要组成部分。早期诊断对提高患者的生活质量至关重要。最近,诸如图像处理、涉及机器学习的人工智能、深度学习和迁移学习等改进技术被引入到AD检测中。本文综述了图像处理、特征提取、优化和分类方法在AD识别中的作用。深入探讨了AD多类别诊断所采用的不同方法。本文进一步从采用的技术、性能指标、分类准确性、出版年份和数据集等方面对现有AD研究进行了简要比较。然后总结了评审作品中的重要技术障碍。本文使读者对AD诊断有了深入的了解,促进了该领域的广泛研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiclass Diagnosis of Alzheimer’s Disease Analysis Using Machine Learning and Deep Learning Techniques
Alzheimer’s disease (AD) is a popular neurological disorder affecting a critical part of the world’s population. Its early diagnosis is extremely imperative for enhancing the quality of patients’ lives. Recently, improved technologies like image processing, artificial intelligence involving machine learning, deep learning, and transfer learning have been introduced for detecting AD. This review describes the contribution of image processing, feature extraction, optimization, and classification approach in AD recognition. It deeply investigates different methods adopted for multiclass diagnosis of AD. The paper further presents a brief comparison of existing AD studies in terms of techniques adopted, performance measures, classification accuracy, publication year, and datasets. It then summarizes the important technical barriers in reviewed works. This paper allows the readers to gain profound knowledge regarding AD diagnosis for promoting extensive research in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信