使用基于接近度的聚类连接社交网络的用户配置文件

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rashmi C, M. Kodabagi
{"title":"使用基于接近度的聚类连接社交网络的用户配置文件","authors":"Rashmi C, M. Kodabagi","doi":"10.22452/mjcs.sp2022no2.1","DOIUrl":null,"url":null,"abstract":"The establishment of connections among social network users using their profile information is an important task in social network analysis, which facilitates the development of various technological solutions such as stock market analysis, crime detection, tracking system of fraudulent events, etc. In this work, a proximity-based clustering method for networking LinkedIn profiles is presented. The proposed system computes proximity value between users using various attributes of user profiles. The proximity measures are computed by analyzing unstructured data of user profiles to connect users. The method addresses various issues such as comparison of familiar sentences, finding patterns, and sub-patterns among user profiles, assigning weights on attributes similarity, and computing total similarity which is associated with unstructured data. After computing proximity measures on various attributes of user profiles, the connecting edges between nodes are determined by employing artificial intelligence and a network graph is formed. The method is evaluated on a LinkedIn data-set to form a connected graph. The strength of the proposed methodology lies in the formation of multi-layered network graphs, as it uses various attributes of the user profiles to connect them. The proposed methodology helps various applications like recommendation systems to form network graphs of selected attributes and perform the social network analysis. The method achieves an accuracy of 96%. However, the profiles containing abbreviations of important information are not matched and the system accuracy drops down in such cases.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CONNECTING USER PROFILES OF SOCIAL NETWORKS USING PROXIMITY-BASED CLUSTERING\",\"authors\":\"Rashmi C, M. Kodabagi\",\"doi\":\"10.22452/mjcs.sp2022no2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The establishment of connections among social network users using their profile information is an important task in social network analysis, which facilitates the development of various technological solutions such as stock market analysis, crime detection, tracking system of fraudulent events, etc. In this work, a proximity-based clustering method for networking LinkedIn profiles is presented. The proposed system computes proximity value between users using various attributes of user profiles. The proximity measures are computed by analyzing unstructured data of user profiles to connect users. The method addresses various issues such as comparison of familiar sentences, finding patterns, and sub-patterns among user profiles, assigning weights on attributes similarity, and computing total similarity which is associated with unstructured data. After computing proximity measures on various attributes of user profiles, the connecting edges between nodes are determined by employing artificial intelligence and a network graph is formed. The method is evaluated on a LinkedIn data-set to form a connected graph. The strength of the proposed methodology lies in the formation of multi-layered network graphs, as it uses various attributes of the user profiles to connect them. The proposed methodology helps various applications like recommendation systems to form network graphs of selected attributes and perform the social network analysis. The method achieves an accuracy of 96%. However, the profiles containing abbreviations of important information are not matched and the system accuracy drops down in such cases.\",\"PeriodicalId\":49894,\"journal\":{\"name\":\"Malaysian Journal of Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.22452/mjcs.sp2022no2.1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.sp2022no2.1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

利用个人资料信息建立社交网络用户之间的联系是社交网络分析中的一项重要任务,它有助于开发各种技术解决方案,如股票市场分析、犯罪侦查、欺诈事件跟踪系统等。在这项工作中,提出了一种基于接近度的聚类方法。该系统利用用户档案的不同属性计算用户之间的接近值。通过分析用户档案中的非结构化数据,计算出用户之间的接近度。该方法解决了各种问题,例如比较熟悉的句子、查找用户配置文件中的模式和子模式、分配属性相似度的权重以及计算与非结构化数据相关的总相似度。通过计算用户画像各属性的接近度,利用人工智能确定节点间的连接边,形成网络图。在LinkedIn数据集上对该方法进行评估,形成连通图。提出的方法的优势在于多层网络图的形成,因为它使用用户配置文件的各种属性来连接它们。提出的方法可以帮助推荐系统等各种应用程序形成选定属性的网络图并执行社会网络分析。该方法的准确率为96%。但是,在这种情况下,包含重要信息缩写的配置文件不匹配,系统精度下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONNECTING USER PROFILES OF SOCIAL NETWORKS USING PROXIMITY-BASED CLUSTERING
The establishment of connections among social network users using their profile information is an important task in social network analysis, which facilitates the development of various technological solutions such as stock market analysis, crime detection, tracking system of fraudulent events, etc. In this work, a proximity-based clustering method for networking LinkedIn profiles is presented. The proposed system computes proximity value between users using various attributes of user profiles. The proximity measures are computed by analyzing unstructured data of user profiles to connect users. The method addresses various issues such as comparison of familiar sentences, finding patterns, and sub-patterns among user profiles, assigning weights on attributes similarity, and computing total similarity which is associated with unstructured data. After computing proximity measures on various attributes of user profiles, the connecting edges between nodes are determined by employing artificial intelligence and a network graph is formed. The method is evaluated on a LinkedIn data-set to form a connected graph. The strength of the proposed methodology lies in the formation of multi-layered network graphs, as it uses various attributes of the user profiles to connect them. The proposed methodology helps various applications like recommendation systems to form network graphs of selected attributes and perform the social network analysis. The method achieves an accuracy of 96%. However, the profiles containing abbreviations of important information are not matched and the system accuracy drops down in such cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Malaysian Journal of Computer Science
Malaysian Journal of Computer Science COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
2.20
自引率
33.30%
发文量
35
审稿时长
7.5 months
期刊介绍: The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication.  The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信