东北黑土区不同土地利用/覆盖条件下土壤入渗特性的变化

IF 7.3 1区 农林科学 Q1 ENVIRONMENTAL SCIENCES
Pingzong Zhu , Guanghui Zhang , Chengshu Wang , Shiqi Chen , Yuanqiang Wan
{"title":"东北黑土区不同土地利用/覆盖条件下土壤入渗特性的变化","authors":"Pingzong Zhu ,&nbsp;Guanghui Zhang ,&nbsp;Chengshu Wang ,&nbsp;Shiqi Chen ,&nbsp;Yuanqiang Wan","doi":"10.1016/j.iswcr.2023.07.007","DOIUrl":null,"url":null,"abstract":"<div><p>Soil infiltration properties (SIPs) of infiltration rate and saturated hydraulic conductivity significantly affect hydrological and erosion processes, thus, knowledge of SIPs under different land use/cover are vital for land use management to control soil erosion for realizing the sustainable development of the small agricultural watershed. Nevertheless, few studies have been carried out to investigate the differences in SIPs and their dominant influencing factors between different land use/cover in the black soil region of Northeast China. Therefore, eight typical land use/cover were selected to clarify the variations in SIPs between different land use/cover and further identify their dominant influencing factors. SIPs of initial infiltration rate (IIR), steady infiltration rate (SIR), and saturated hydraulic conductivity (<em>K</em>s) were determined under eight typical land use/cover (forestland, shrub land, grassland, longitudinal shelterbelt, transverse shelterbelt, agricultural road, and cropland of <em>Zea mays</em> L. and <em>Glycine max (Linn.) Merr</em>) using a tension disc infiltrometer with three pressure heads of −3, −1.5, and 0 cm. The results of one-way ANOVA analysis showed that SIPs varied greatly between different land use/cover. Shelterbelt plant with <em>Populus</em> L. had the maximum IIR, SIR, and <em>K</em>s, and then followed by shrub land, agricultural road, cropland, grassland, and forestland. Spearman correlation analysis indicated that SIPs were significantly correlated with soil and vegetation properties. Redundancy analysis revealed that differences in SIPs between different land use/cover were dominantly attributed to the differences in soil texture, field capacity, and plant root mass density, which explained 79.36% of the total variation in SIPs. Among these dominant influencing factors, the results of structural equation model indicated that the indirect effects of plant root and soil texture played the most important role in variations of SIPs via affecting soil texture and pore characteristics. These results have significant implications for the precise prediction of watershed hydrological and erosion processes, also provide a scientific basis for guiding the distribution pattern of land use in the cultivated watershed.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000618/pdfft?md5=716bd5bf418d058ffed88e79e69e4bcc&pid=1-s2.0-S2095633923000618-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Variation in soil infiltration properties under different land use/cover in the black soil region of Northeast China\",\"authors\":\"Pingzong Zhu ,&nbsp;Guanghui Zhang ,&nbsp;Chengshu Wang ,&nbsp;Shiqi Chen ,&nbsp;Yuanqiang Wan\",\"doi\":\"10.1016/j.iswcr.2023.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil infiltration properties (SIPs) of infiltration rate and saturated hydraulic conductivity significantly affect hydrological and erosion processes, thus, knowledge of SIPs under different land use/cover are vital for land use management to control soil erosion for realizing the sustainable development of the small agricultural watershed. Nevertheless, few studies have been carried out to investigate the differences in SIPs and their dominant influencing factors between different land use/cover in the black soil region of Northeast China. Therefore, eight typical land use/cover were selected to clarify the variations in SIPs between different land use/cover and further identify their dominant influencing factors. SIPs of initial infiltration rate (IIR), steady infiltration rate (SIR), and saturated hydraulic conductivity (<em>K</em>s) were determined under eight typical land use/cover (forestland, shrub land, grassland, longitudinal shelterbelt, transverse shelterbelt, agricultural road, and cropland of <em>Zea mays</em> L. and <em>Glycine max (Linn.) Merr</em>) using a tension disc infiltrometer with three pressure heads of −3, −1.5, and 0 cm. The results of one-way ANOVA analysis showed that SIPs varied greatly between different land use/cover. Shelterbelt plant with <em>Populus</em> L. had the maximum IIR, SIR, and <em>K</em>s, and then followed by shrub land, agricultural road, cropland, grassland, and forestland. Spearman correlation analysis indicated that SIPs were significantly correlated with soil and vegetation properties. Redundancy analysis revealed that differences in SIPs between different land use/cover were dominantly attributed to the differences in soil texture, field capacity, and plant root mass density, which explained 79.36% of the total variation in SIPs. Among these dominant influencing factors, the results of structural equation model indicated that the indirect effects of plant root and soil texture played the most important role in variations of SIPs via affecting soil texture and pore characteristics. These results have significant implications for the precise prediction of watershed hydrological and erosion processes, also provide a scientific basis for guiding the distribution pattern of land use in the cultivated watershed.</p></div>\",\"PeriodicalId\":48622,\"journal\":{\"name\":\"International Soil and Water Conservation Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095633923000618/pdfft?md5=716bd5bf418d058ffed88e79e69e4bcc&pid=1-s2.0-S2095633923000618-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Soil and Water Conservation Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095633923000618\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000618","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

入渗率和饱和导水率等土壤入渗特性(SIPs)对水文过程和水土流失过程有重要影响,因此,了解不同土地利用/覆盖条件下的土壤入渗特性对于土地利用管理、控制水土流失、实现农业小流域的可持续发展至关重要。然而,针对东北黑土区不同土地利用/覆盖方式下 SIPs 的差异及其主要影响因素的研究还很少。因此,本文选择了八种典型的土地利用/覆盖方式,以阐明不同土地利用/覆盖方式之间 SIPs 的差异,并进一步确定其主要影响因素。采用张力圆盘入渗仪测定了八种典型土地利用/覆盖(林地、灌木林地、草地、纵向防护林带、横向防护林带、农用道路、耕地(Zea mays L.和 Glycine max (Linn.) Merr))的初始入渗率(IIR)、稳定入渗率(SIR)和饱和导流系数(Ks)。单因子方差分析结果表明,不同土地利用/覆盖的 SIPs 差异很大。种植杨树的防护林带的 IIR、SIR 和 Ks 最大,其次是灌木林地、农用道路、耕地、草地和林地。斯皮尔曼相关分析表明,SIPs 与土壤和植被特性有显著相关性。冗余分析表明,不同土地利用/覆盖之间的 SIPs 差异主要归因于土壤质地、田间容重和植物根系密度的差异,这些因素解释了 SIPs 总变异的 79.36%。在这些主要影响因素中,结构方程模型的结果表明,植物根系和土壤质地通过影响土壤质地和孔隙特征对 SIPs 的变化起到了最重要的间接作用。这些结果对流域水文和侵蚀过程的精确预测具有重要意义,也为指导耕地流域的土地利用分布模式提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variation in soil infiltration properties under different land use/cover in the black soil region of Northeast China

Soil infiltration properties (SIPs) of infiltration rate and saturated hydraulic conductivity significantly affect hydrological and erosion processes, thus, knowledge of SIPs under different land use/cover are vital for land use management to control soil erosion for realizing the sustainable development of the small agricultural watershed. Nevertheless, few studies have been carried out to investigate the differences in SIPs and their dominant influencing factors between different land use/cover in the black soil region of Northeast China. Therefore, eight typical land use/cover were selected to clarify the variations in SIPs between different land use/cover and further identify their dominant influencing factors. SIPs of initial infiltration rate (IIR), steady infiltration rate (SIR), and saturated hydraulic conductivity (Ks) were determined under eight typical land use/cover (forestland, shrub land, grassland, longitudinal shelterbelt, transverse shelterbelt, agricultural road, and cropland of Zea mays L. and Glycine max (Linn.) Merr) using a tension disc infiltrometer with three pressure heads of −3, −1.5, and 0 cm. The results of one-way ANOVA analysis showed that SIPs varied greatly between different land use/cover. Shelterbelt plant with Populus L. had the maximum IIR, SIR, and Ks, and then followed by shrub land, agricultural road, cropland, grassland, and forestland. Spearman correlation analysis indicated that SIPs were significantly correlated with soil and vegetation properties. Redundancy analysis revealed that differences in SIPs between different land use/cover were dominantly attributed to the differences in soil texture, field capacity, and plant root mass density, which explained 79.36% of the total variation in SIPs. Among these dominant influencing factors, the results of structural equation model indicated that the indirect effects of plant root and soil texture played the most important role in variations of SIPs via affecting soil texture and pore characteristics. These results have significant implications for the precise prediction of watershed hydrological and erosion processes, also provide a scientific basis for guiding the distribution pattern of land use in the cultivated watershed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Soil and Water Conservation Research
International Soil and Water Conservation Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
12.00
自引率
3.10%
发文量
171
审稿时长
49 days
期刊介绍: The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation. The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards. Examples of appropriate topical areas include (but are not limited to): • Conservation models, tools, and technologies • Conservation agricultural • Soil health resources, indicators, assessment, and management • Land degradation • Sustainable development • Soil erosion and its control • Soil erosion processes • Water resources assessment and management • Watershed management • Soil erosion models • Literature review on topics related soil and water conservation research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信