Zhiwei Jiao, Zhongyuan Zhuang, Li Hu, Ce Sun, Yuan Yu, Weimin Yang
{"title":"硅树脂3D打印装置的硬度和模量可编程调整及实验","authors":"Zhiwei Jiao, Zhongyuan Zhuang, Li Hu, Ce Sun, Yuan Yu, Weimin Yang","doi":"10.1108/rpj-06-2022-0179","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study was to fabricate silicone products that had different hardnesses and moduli, thus partially addressing the limitations of homogeneous materials whose deformation depends on altered structure or dimensions, and to provide new dimensions for the design of silicone soft structures.\n\n\nDesign/methodology/approach\nA soft material three-dimensional printing platform with a dual-channel printing capability was designed and built. Using the material extrusion method, material screening was first performed using single-channel printing, followed by dual-channel-regulated printing experiments on products having different hardness and modulus values.\n\n\nFindings\nThe proportion of additives has an effect on the accuracy of the printed product. Material screening revealed that Sylgard 527 and SE 1700 could be printed without additives. The hardness and mechanical properties of products are related to the percentage in their composition of hard and soft materials. The hardness of the products could be adjusted from 26A to 42A and the Young’s modulus from 0.875 to 2.378 Mpa.\n\n\nOriginality/value\nExisting silicone products molded by casting or printing are mostly composed of a single material, whose uniform hardness and modulus cannot meet the demand for differentiated deformation in the structure. The existing multihardness silicone material printing method has the problems of long material mixing time and slow hardness switching and complicated multi-extrusion head switching. In this study, a simple, low-cost and responsive material extrusion-based hardness programmable preparation method for silicone materials is proposed.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardness and modulus programmable tuning for silicone 3D printing device and experiment\",\"authors\":\"Zhiwei Jiao, Zhongyuan Zhuang, Li Hu, Ce Sun, Yuan Yu, Weimin Yang\",\"doi\":\"10.1108/rpj-06-2022-0179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this study was to fabricate silicone products that had different hardnesses and moduli, thus partially addressing the limitations of homogeneous materials whose deformation depends on altered structure or dimensions, and to provide new dimensions for the design of silicone soft structures.\\n\\n\\nDesign/methodology/approach\\nA soft material three-dimensional printing platform with a dual-channel printing capability was designed and built. Using the material extrusion method, material screening was first performed using single-channel printing, followed by dual-channel-regulated printing experiments on products having different hardness and modulus values.\\n\\n\\nFindings\\nThe proportion of additives has an effect on the accuracy of the printed product. Material screening revealed that Sylgard 527 and SE 1700 could be printed without additives. The hardness and mechanical properties of products are related to the percentage in their composition of hard and soft materials. The hardness of the products could be adjusted from 26A to 42A and the Young’s modulus from 0.875 to 2.378 Mpa.\\n\\n\\nOriginality/value\\nExisting silicone products molded by casting or printing are mostly composed of a single material, whose uniform hardness and modulus cannot meet the demand for differentiated deformation in the structure. The existing multihardness silicone material printing method has the problems of long material mixing time and slow hardness switching and complicated multi-extrusion head switching. In this study, a simple, low-cost and responsive material extrusion-based hardness programmable preparation method for silicone materials is proposed.\\n\",\"PeriodicalId\":20981,\"journal\":{\"name\":\"Rapid Prototyping Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Prototyping Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/rpj-06-2022-0179\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-06-2022-0179","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Hardness and modulus programmable tuning for silicone 3D printing device and experiment
Purpose
The purpose of this study was to fabricate silicone products that had different hardnesses and moduli, thus partially addressing the limitations of homogeneous materials whose deformation depends on altered structure or dimensions, and to provide new dimensions for the design of silicone soft structures.
Design/methodology/approach
A soft material three-dimensional printing platform with a dual-channel printing capability was designed and built. Using the material extrusion method, material screening was first performed using single-channel printing, followed by dual-channel-regulated printing experiments on products having different hardness and modulus values.
Findings
The proportion of additives has an effect on the accuracy of the printed product. Material screening revealed that Sylgard 527 and SE 1700 could be printed without additives. The hardness and mechanical properties of products are related to the percentage in their composition of hard and soft materials. The hardness of the products could be adjusted from 26A to 42A and the Young’s modulus from 0.875 to 2.378 Mpa.
Originality/value
Existing silicone products molded by casting or printing are mostly composed of a single material, whose uniform hardness and modulus cannot meet the demand for differentiated deformation in the structure. The existing multihardness silicone material printing method has the problems of long material mixing time and slow hardness switching and complicated multi-extrusion head switching. In this study, a simple, low-cost and responsive material extrusion-based hardness programmable preparation method for silicone materials is proposed.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation