{"title":"什么时候M0,n(∈1,1)是Mori梦空间?","authors":"C. Fontanari","doi":"10.1515/advgeom-2021-0019","DOIUrl":null,"url":null,"abstract":"Abstract The moduli space M¯0,n(ℙ1,1) ${{\\bar{M}}_{0,n}}\\left( {{\\mathbb{P}}^{1}},1 \\right)$of n-pointed stable maps is a Mori dream space whenever the moduli space M¯0,n+3 of (n+3) ${{\\bar{M}}_{0,n+3}}\\; \\text{of} \\;(n+3)$pointed rational curves is, and M¯0,n(ℙ1,1) ${{\\bar{M}}_{0,n}}\\left( {{\\mathbb{P}}^{1}},1 \\right)$is a log Fano variety for n ≤ 5.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"21 1","pages":"343 - 346"},"PeriodicalIF":0.5000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/advgeom-2021-0019","citationCount":"1","resultStr":"{\"title\":\"When is M0,n(ℙ1,1) a Mori dream space?\",\"authors\":\"C. Fontanari\",\"doi\":\"10.1515/advgeom-2021-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The moduli space M¯0,n(ℙ1,1) ${{\\\\bar{M}}_{0,n}}\\\\left( {{\\\\mathbb{P}}^{1}},1 \\\\right)$of n-pointed stable maps is a Mori dream space whenever the moduli space M¯0,n+3 of (n+3) ${{\\\\bar{M}}_{0,n+3}}\\\\; \\\\text{of} \\\\;(n+3)$pointed rational curves is, and M¯0,n(ℙ1,1) ${{\\\\bar{M}}_{0,n}}\\\\left( {{\\\\mathbb{P}}^{1}},1 \\\\right)$is a log Fano variety for n ≤ 5.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"21 1\",\"pages\":\"343 - 346\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/advgeom-2021-0019\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2021-0019\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract The moduli space M¯0,n(ℙ1,1) ${{\bar{M}}_{0,n}}\left( {{\mathbb{P}}^{1}},1 \right)$of n-pointed stable maps is a Mori dream space whenever the moduli space M¯0,n+3 of (n+3) ${{\bar{M}}_{0,n+3}}\; \text{of} \;(n+3)$pointed rational curves is, and M¯0,n(ℙ1,1) ${{\bar{M}}_{0,n}}\left( {{\mathbb{P}}^{1}},1 \right)$is a log Fano variety for n ≤ 5.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.